

WebServices with BEA WebLogic

WebServices in a Commercial Product
(Short Version)

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 1

Exercise

8 Pizzas(short)
WebServices with BEA WebLogic
WebServices in a Commercial Product (Short Version)

Introduction

BEA WebLogic is BEA’s flagship application server product. It is a fully-featured product and
provides support for the whole J2EE specification as well as extra facilities for clustering,
transaction handling, etc.

WebLogic also supports SOAP and WSDL.

In this exercise you will take a brief look at WebLogic’s WebServices support features and
also see how SOAP makes it possible for various technologies to interoperate.

Setting Up

There are a number of housekeeping tasks you need to do before you can get started.

Installing the Software

In this session, you will require the following:

n MS SOAP Toolkit 3.0
n Microsoft Windows Script 5.6
n BEA WebLogic Server 8.1

Each of the above are distributed as windows installers.

Install MS SOAP Toolkit

Installing this toolkit is another straightforward task using the installer supplied on your CD in
Resources\soapsdk.exe.

Install MS Windows Script

If you are using Windows 2000 or above, this facility is part of the standard Operating
System, otherwise simply double-click the supplied installer Resources\scr56en.exe.

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 2

Install BEA Weblogic 8.1

Simply double-click the supplied installer Resources\WebLogic 8.1\server811_win32.exe.
You should accept all the default settings offered to you by the installer. In particular, this
exercise assumes that WebLogic is installed under the directory C:\bea.

Pizzas!

WebLogic exposes a large proportion of its infrastructure for the WebServices developer to
use. In particular, WebLogic exposes Enterprise Java Beans† as WebServices, thus allowing
the WebServices developer to utilise the full power of the J2EE environment.

In this section, you will create a Stateless Session EJB (a close analogue to a Servlet) and
expose it as a WebService.

Populate Development Directories

Open a Command Prompt window and then execute the following command to set up a new
directory for you to ‘play’ in (in this sheet the DOS command prompt is shown as >, you
should not type this directly. This command assumes that your CD-ROM is accessible via
drive Z:):

> xcopy /e/i "Z:\Exercises\8 Pizzasshort\framework" C:\Pizzasshort

This directory contains some empty files for you to edit, alongside a number of ‘boilerplate’
files that you should examine briefly but that should not be changed.

You should do the majority of your work within the C:\Pizzasshort directory.

Retrieve a Weblogic Domain

 A Weblogic domain is a set of configuration files and code components collected together
into a directory and described by an XML configuration file.

A pre-configured, pre-populated domain has been prepared for you.

Execute the following command:

> xcopy /e/i "Z:\Exercises\8 Pizzasshort\user_projects.zip" C:\

Once you have copied that file, you will need to extract it (use WinZip, included on your CD
in the resources directory if not already installed). You should ensure that it is extracted to a
directory hierarchy rooted at C:\bea. You should end up with the following heirarchy:

C:\bea\user_projects
 domains

† An Enterprise Java Bean may be thought of as a “more evolved servlet” that lives within an environment that
provides higher functionality support services than those provided to a simple servlet.

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 3

 pizzadomain
 …

Examine the EJB Components (optional)

In this session, you will be exposing a Java-based Enterprise Java Bean (EJB) as a Web
Service. This component has been supplied for you but you may wish to take a quick look at
the various parts that comprise the bean.

An EJB consists of two separate Java interfaces and a single Java class file.

n Home interface
Provides lifecycle support of the bean (creation, removal, etc.).

n Remote interface
Provides a means of advertising the business logic methods implemented by the
Enterprise Java Bean.

n Bean class
The implementation class of the EJB.

You may briefly examine these various files.

The Home Interface

Examine the file C:\pizzasshort\pizzaEJB\PizzaHome.java:

package pizzas.pizzaEJB;

public interface PizzaHome
 extends javax.ejb.EJBHome
 {
 Pizza create()
 throws javax.ejb.CreateException, java.rmi.RemoteException;
 }

The Remote Interface

Examine the file C:\pizzasshort\pizzaEJB\Pizza.java:

package pizzas.pizzaEJB;

import java.rmi.RemoteException;

public interface Pizza
 extends javax.ejb.EJBObject
 {
 public float getStandardPizza ()
 throws RemoteException;
 public float getCustomPizza (String [] toppings)
 throws RemoteException;
 }

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 4

The Bean Component Class

Examine the file C:\pizzasshort\pizzaEJB\PizzaBean.java:

package pizzas.pizzaEJB;

public class PizzaBean
 implements javax.ejb.SessionBean
 {
 private final float
 STANDARD_COST = 7.50f,
 TOPPING_COST = 0.5f;

 public void ejbActivate () { }
 public void ejbRemove () { }
 public void ejbPassivate () { }
 public void setSessionContext (javax.ejb.SessionContext ctx) { }

 public void ejbCreate ()
 throws javax.ejb.CreateException
 { }

 public float getStandardPizza ()
 {
 return (STANDARD_COST);
 }

 public float getCustomPizza (String [] toppings)
 {
 return (getStandardPizza () +
 (toppings.length * TOPPING_COST));
 }
 }

The XML Deployment Descriptors

You may also briefly examine the associated XML files: ejb-jar.xml and weblogic-ejb-jar.xml
(they are simply text files that can be opened with any editor). Together, these files tell
WebLogic which Java class files comprise the bean, how session/transaction handling
should be performed on behalf of the bean, etc.

Start WebLogic

To start WebLogic running (and thus, to deploy the Pizza EJB), open up a new Command
Prompt and execute the following command sequence:

> cd /d C:\bea\user_projects\domains\pizzadomain
> .\startweblogic.cmd

You will know that Weblogic has started correctly when you see the “…listening on port
7001…” message, as shown below:

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 5

Verify the Deployment with the Console

WebLogic has a web-based console that allows one to examine deployments and the
overall operation of the system.

Point your browser to the URL http://localhost:7001/console. You will be asked to provide
a username and password (use system and weblogic respectively) and you will see the
console. You can navigate around the system using the tree on the left of the window.

The following picture shows what you should see if the Pizzas EJB has been successfully
deployed:

Navigate through the left-hand tree to pizzadomain→Deployments→Applications→
_appsdir_pizzas_ear→/pizzas and look at the various tabs, including the Testing tab, as
shown above.

The Testing tab (shown in the above screenshot) lets you view and work with several
aspects of the Web Service that is created from the underlying Pizza EJB.

Examine the Web Service Deployment

Click on the http://localhost:7001/pizzas/pizzasuri link. You will see the following:

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 6

This page provides a number of handy recommendations for developers writing code that
uses this Web Service.

Examine the WSDL File

You should examine the Web Services Description Language file that you can retrieve by
clicking on the “Service Description” link (if you use Netscape, It may not display in the
browser window so either save it to disk first, or use the appropriate “View Source”
command to examine it once your browser has stopped downloading). You should see
something like the following:

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 7

As you examine this file, you should see that it describes everything about the Web Service
to make it possible for a “self-configuring” client to come along and interact with the service.

Test a Web Service Method

To make sure that all is working properly, return to the ‘statelessSession’ page and click on
the ‘getCustomPizza’ link shown at the top of the page.

You will be presented with a form that makes it possible to pass data to the method to test its
operation. Edit the XML request parameter XML so that it passes in a couple of pizza
toppings:

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 8

To execute the method, press the Invoke button. You will be greeted with a new page
echoing the request message data and showing the response message, as well as showing
the result of the execution:

This is a useful “quick and dirty” test facility.

Create the Java Client

A bit of Java Development…

Create the following in the file C:\Pizzasshort\jClient\Client.java, following the pattern
shown to you earlier (in the Weblogic console ‘Testing’ page):

package pizzas.jClient;

import java.io.PrintWriter;

public class Client

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 9

 {
 private static final PrintWriter
 out = new PrintWriter (System.out, true);
 public static void main (String[] args)
 throws Exception
 {

 String wsdlUrl = "http://localhost:7001/pizzas/pizzasuri?WSDL";
 StatelessSession
 service = new StatelessSession_Impl(wsdlUrl);
 StatelessSessionPort port = service.getstatelessSessionPort();

 out.println ("Cost of a standard pizza: $" +
 port.getStandardPizza ());

 final String []
 toppings = { "mushrooms", "pepperoni" };
 out.print ("Cost of a pizza with");
 for (int i = 0; i < toppings.length; i ++)
 out.print (" " + toppings [i]);
 out.println (": $" + port.getCustomPizza (toppings));
 }
 }

Compile and Execute the Java Client

BEA WebLogic 8.1 provides the open source community’s Ant tool to let you control and
script the development process. This tool is configured via the file build.xml. You should
examine this file.

Using Ant is easy. It is necessary to ensure that Ant is executable via the command line and
the Java CLASSPATH is configured correctly (this only needs to be done once when a
Command Prompt window is initially opened, but it needs to be done each time a new
Command Prompt window is opened).

In a new Command Prompt window type the following sequence of commands to build and
execute your Java client application:

> cd /d C:\Pizzasshort
> C:\bea\user_projects\domains\pizzadomain\setEnv.cmd
> ant –verbose
> ant run

You should see the application run and return the price of various pizza combinations
(obtained from the pre-built and pre-deployed Pizza EJB).

è© Transentia Pty. Ltd., 10/09/2003 10:49 AM 10

A Cross-Language Demonstration

Since WebLogic WebServices allow SOAP-based access, any SOAP-aware client can
make use of a WebLogic Webservice. This is an important feature. The typical J2EE
systems allow for Web, Java and CORBA clients but have not had (and still do not have) a
convincing way of working with Microsoft COM-based technologies. This has long been a
stumbling block for large enterprises. WebServices hold a lot of promise for the many
enterprises that already have a heavy investment in Microsoft COM-based technologies.

This section will show how Visual Basic Scripting combined with WebService technology can
be used to access a Java-based EJB.

Establish a Working Directory

In a new Command Prompt window execute the commands:

> cd /d C:\pizzas\vClient

Create the Visual Basic Script

Create the following in the file pizzas.vbs:

SET soapclient = WScript.CreateObject ("MSSOAP.SoapClient")
CALL soapclient.mssoapinit
 ("http://localhost:7001/pizzas/pizzasuri?WSDL")
WScript.Echo "The cost of a standard Pizza is: $" &
 soapclient.getStandardPizza()
DIM toppings(1) ' actually *2* elements in the array
toppings(0) = "marshmallows"
toppings(1) = "anchovies"
WScript.Echo "The cost of a custom Pizza is: $" &
 soapclient.getCustomPizza(toppings)

Be careful of line breaks:indented lines should be typed directly on the previous line; there
should only be seven lines of code in the source file.

Execute the Script

Execute the following simple command:

> cscript /nologo pizzas.vbs

You will see the now-familiar cost of various pizzas displayed for you.

Do not underestimate the power implied in this simple exercise: you have created an
enterprise-grade application in Java and invoked it from a simple script written in VBScript.
This is a good example of cross-language interoperability. The solution is capable of working
through firewalls and is fairly simple to get going and to administer. WebServices really hold
a lot of promise for the future.

