RMI

» Remote Method Invocation

¢ “...the action of invoking a method of a remote

Interface on a remote object.”

+ maintains type safety, security, etc.
& greater degree of abstraction than sockets

~ lots of the work done for you
e parameter/return marshalling
* name lookups

+ still lots of housekeeping to do

client

T

&
i

[EjEpsgn

D

(un\marshalling

server

parameXers/returns

Sunday, July 05, 2009

RMI

¢ goals:

= support seamless remote invocation on objects in
different virtual machines

+ support callbacks from servers to applets

= Integrate the distributed object model into Java
while retaining most of the language's semantics

-~ make differences between the distributed object
model and local Java object model apparent,
while preserving the safety features of the Java
language and runtime environment

-~ make distributed systems as simple as possible to
program

Sunday, July 05, 2009 2

RMI

¢ RMI obviates the need to develop fiddly
Application Layer protocols that don’t have any
direct relevance to a project

¢ main aspects to examine:
- client side
~server side
¢ also:
= registry/naming
- stubs and skeletons
- security

Sunday, July 05, 2009

RMI

» Client side

¢ “...whole point of RMI is to make the use of
remote objects very simple...only extra thing
needed is to obtain a reference to the remote
interface”

¢ java.rmi.RemoteException Class

~ makes it possible to distinguish local exceptions,
& exceptions specific to the method, from
exceptions thrown by the underlying mechanisms

+can be constructed with a nested exception (a
Throwable): the underlying exception that
occurred during an RMI call

Sunday, July 05, 2009

RMI

¢ The Naming Class

- allows remote objects to be retrieved and defined
via URLs

« rmi://java.sun.com:2001/root

-~ methods (from java.rmi.registry.Registry interface)
* bind, rebind
* unbind
* lookup
* list
= registry supports bind, unbind, and rebind only on
the same host as the originating server; a lookup
can be done from any host

+ JDK supplies rmiregistry

« simple registry server
Sunday, July 05, 2009

RMI

import java.rmi.¥*;
import java.rmi.registry.*;

public class DisplayTime

{

public static void main (String [] args)

{

System.setSecurityManager (new RMISecurityManager ());

try
{
TimeSvecI t = (TimeSvcI) Naming.lookup ("//machine.name:2005/TimeSvc") ;
System.out.println (“The time = " + t.getTime())

}

catch (Exception e)

{

e.printStackTrace() ;

}

Sunday, July 05, 2009

RMI

= Server side
< java.rmi.Remote Interface

public interface Remote { }

-~ marker interface: all remote objects must directly
or indirectly implement this

¢ java.rmi.server.UnicastRemoteObject

+ provides support for point-to-point active object
references using TCP-based streams

+server must extend this and implement the
java.rmi.Remote interface

¢ java.rmi.server.Unreferenced interface
- lets server know when no clients reference it

Sunday, July 05, 2009

RMI

import java.rmi.¥*;

interface TimeSvcl extends Remote

{

long getTime () throws RemoteException;

}

Sunday, July 05, 2009

RMI

import java.rmi.¥*;
import java.rmi.server.*;
import java.rmi.registry.¥*;

public class TimeSvc extends UnicastRemoteObject implements TimeSvcI
{
public long getTime () throws RemoteException
{ return (System.currentTimeMillis ()), }

// must implement constructor to throw RemoteException
public TimeSvc () throws RemoteException
{ /* super () Called automatically */ }

public static void main (String [] args)
{
System. setSecurityManager (new RMISecurityManager ());
try
{
TimeSvc t = new TimeSvc () ;
Naming.bind ("//machine.name:2005/TimeSvc", t);
System.out.println ("TimeSvc running...");
}
catch (Exception e)
{ e.printStackTrace (); }

}
}
Sunday, July 05, 2009

RMI

= Stub
¢ stub == client-side proxy
¢ implements all the interfaces that are supported
by the remote object. Responsible for:
= Initiating a call to the remote object

- marshalling arguments to a stream (obtained from
the remote reference layer)

= informing the remote reference layer that the call
should be invoked

-~ unmarshalling the return value or exception

+informing the remote reference layer that the call
IS complete

Sunday, July 05, 2009 10

RMI

= Skeleton

¢ server-side entity which dispatches calls to the
actual remote object implementation.
Responsible for:

-~ unmarshalling arguments from the marshal stream

-~ making the up-call to the actual remote object
Implementation

-~ marshalling the return value of the call or an
exception (if one occurred) onto the marshal
stream

= args/return types must implement the
Serializable interface

Sunday, July 05, 2009 11

RMI

« Stubs & skeletons

¢ loaded dynamically “behind the scenes”

-~ must be accessible to ‘real’ code (ie on
CLASSPATH or downloaded from server)

¢ generated using the rmic compiler
+ “The compiler is invoked with the package

qualified class name of the remote object class.

The class must previously have been compiled
successfully.”
e rmic TimeSvc (since no package in this case...)
- creates:
« TimeSvc_Stub.class
* TimeSvc_Skel.class

Sunday, July 05, 2009

12

RMI

» RMISecurityManager

¢ simple security manager disables all functions
except class definition and access...a
downloaded class is allowed to make a
connection if the connection was initiated via the
RMI transport mechanism

& if no security manager set, stub loading is
disabled...ensures that some security manager
must be supplied

& applets: “...does not apply to applets, which run
under the protection of their browser's security
manager.”

& callbacks: “If an applet creates and passes a
remote object to the server, the server can use
RMI to make a callback to the remote object.”

Sunday, July 05, 2009 13

RMI

= Remote Activation

¢ obviates the need to have a server running
continuously, even when unused

¢ RMI catches up with CORBA
& new rmid activation daemon

¢ java.rmi.activate package
- Activable
 analogous to UnicastRemoteObject for activable servers

-~ ActivationDesc

 provides all the info. that rmid needs to create a new
instance of the implementation class

-~ MarshalledObject

» “provides a flexible mechanism for passing persistence
or initialization data...into the implementation’s class file”

Sunday, July 05, 2009 14

RMI

¢ need to create additional starter application:
- tells rmid that the server is activable
- may initialise parameters/persistent data stores

- establishes runtime security policy regime for the
server (what files, etc. can be accessed...)

~advertises server ‘proper’ with rmiregistry

Sunday, July 05, 2009

15

RMI

= Activation Mechanism

Sunday, July 05, 2009

© 00 N o ua ~ W

. client looks up interface
. gets reference back

. calls method

. call causes stub to ‘fault’
. rmid activates server

. method call proceeds

. method returns results (if any)

16

RMI

=« Development process:
* start rmiregistry (only needed once)
* start rmid if servers are activable (" " ")
#* compile source files

apply rmic to any class that implements the
Remote interface

run the server, or run the starter application, as
appropriate
4 run the client

Sunday, July 05, 2009 17

RMI

» Object Request Brokers (ORBs)
¢ RMI is direct object-object, Java-Java

¢ ORBs interpose between the two objects
- similar, but greater flexibility

- allow mixed languages
« C++, Smalltalk, Ada, Python, etc

+ |lots more work
 only really worth it for heterogeneous enterprise

solutions
~much (standardisation) activity =
. 1IOP — O =
—
« Java ORBs —

Sunday, July 05, 2009 18

RMI

« The RMI/CORBA political situation & future

¢ RMI and IIOP statements:
- “Sun will continue to support and evolve the Java
API”
~ “You will be able to access CORBA-based objects
through [IOP”
= “... it remains the technology of choice for Java-
based distributed computing.”

= “Support [for the CORBA IDL]...will be included in
the next version of the JDK”

¢ “...an application in which clients access data
from a large number of sources is patrticularly
well-suited to CORBA.”

Sunday, July 05, 2009 19

