
Native Code

Sunday, July 05, 2009 1

Optimization

Rule #3: don’t
optimize until
you really know
what needs to
be optimized.

“…there is no point in
sacrificing portability for a
meaningless speed
improvement; don’t go
native until you determine
that you have no other
choice.”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 2

n Two aspects:
uJava Native Interface (JNI)

Fhandle those situations when an application
cannot be written entirely in Java.

• Interfacing Java to native code
• Warning! Warning! Will Robinson! Use of native code

leads to loss of portability and the right to jump on the
100% pure Java bandwagon.

uJava Invocation API
Fcan load the Java VM into an arbitrary native

application without having to link with the Java VM
source code

usee if you can use a JIT before resorting to
native code...

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 3

n Java Native Interface (JNI)
umay:

Fneed to access platform-dependent features
Fneed to interface with legacy code
Fhave time/resource constraints that Java can’t

handle
u important to have a standard interface:

Fensures that same native library can work with all
JVMs on a given platform

FMicrosoft: “Standard? Ho Ho Ho! You need RNI”

JVMJava classes Native Code

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 4

u ‘native’ Java keyword
Fsays “get this from outside the Java environment”

Fnative code used in the normal fashion:

F implementation in C++:

// provides access to UNIX system calls
class UNIXSysCalls
{
public native static int chmod (String path, int mode);
… (others)
}

result = UNIXSysCalls.chmod (“/home/bob/SecretStuff”, 0600);

#include <jni.h>
extern “C” jint Java_UNIXSysCalls_chmod
(JNIEnv *env, jclass c, jstring path, jint mode)
{
char *cpath = env -> GetStringUTFChars (path);
jint result = chmod (cpath, mode);
env -> ReleaseStringUTFChars (path, cpath);
return (result);
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 5

usome salient points:
Fname mangling:

• the prefix Java_
• a (mangled fully-qualified) class name
• an underscore ("_") separator
• a mangled method name

FJNIEnv is always the first argument
• points to lookup table of JNI functions

– GetStringUTFChars, etc…

• table layout is COM-compliant: “This means that, as
soon as cross-platform support for COM is available, the
JNI can become a COM interface to the Java VM.”

Fsecond argument:
• for a nonstatic native method: a reference to the object
• for a static native method: a reference to its Java class

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 6

usimple development process:
¬write Java class with native method definitions
 compile to produce a class file
® create C/C++ signatures

• javah -jni filename

¯write C/C++ code corresponding to the generated
signatures in the header file

° create a shared library from the C/C++ code
uuse:

Fsame as any other Java application
Fneed to have shared library in CLASSPATH

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 7

usome security ramifications:
Fapplets can’t use native methods

• ‘cos they can’t access DLLs

Fa wayward bit of native code can bring the whole
shooting match crashing down

• “native methods are a significant security risk for Java
programs. The C runtime system has no protection
against array bounds errors, indirection through bad
pointers, and so on. It is particularly important that
programmers of native methods handle all error
conditions to preserve the integrity of the Java system.”

FJNI allows native methods to raise arbitrary Java
exceptions…native code may also handle
outstanding Java exceptions

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 8

n Java Invocation API
uJDK 1.1’s JVM is a DLL or shared library

Fnot on all platforms, ‘though
uallows a C/C++ application to create a JVM

within itself
F remember TCL?

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 9

#include <jni.h>

JavaVM *jvm; // denotes a Java VM
JNIEnv *env; // pointer to native method interface
JDK1_1InitArgs vm_args; // JDK 1.1 VM initialization arguments

// Get the default initialization arguments and set the class path
JNI_GetDefaultJavaVMInitArgs (&vm_args);
vm_args.classpath = ...;

// load and initialize a Java VM, return a JNI interface pointer in env
JNI_CreateJavaVM (&jvm, &env, &vm_args);

// invoke the Main.test method using the JNI
jclass cls = env -> FindClass ("Main");
jmethodID mid = env -> GetStaticMethodID (cls, "test", "(I)V");
env -> CallStaticVoidMethod (cls, mid, 100);

jvm -> DestroyJavaVM (); mangled
signature

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 10

usignatures
F to call an arbitrary Java method, you need to learn

the rules for ‘mangling’ the names of method
signatures

F representation of method’s name & parameters
• “there’s no rational reason why programmers are forced

to use this mangling scheme…using the mangled
signatures lets you partake in the mystique of
programming close to the virtual machine.”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Native Code

Sunday, July 05, 2009 11

umethod parameters and return type
F long f (float i, String [] s) ==

“(F[Ljava/lang/String;)J”

FZ, V, B, C, D, S, F, I, J, Lclassname;
F [indicates array

uso, “(I)V” ==
Fvoid test (int x)

parameter types return type
array

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

