Basic Java

// Hello.java-the traditional first application
public class Hello

{

public static void main (String [] args)

{
System.out.println (”“Hello JAVA!"”);

}

Similar to C/C++

probably accounts for it’s popularity

// Echo.java-the traditional second application
public class Echo
{
public static void main (String [] args)
{
for (int 1 = 0; i < args.length; i++)
System.out.println (args [1]);
}
}

Sunday, July 05, 2009

Basic Java

%

// Echoll.java-the traditional second application
// modified for Java 1.1
public class Echoll

{

private static PrintWriter stdout = new PrintWriter (System.out);

public static void main (final String [] args)

{

for (int 1 = 0; i < args.length; i++)
stdout.println (args [i]):

stdout.flush () ;

}

Sunday, July 05, 2009

Basic Java

“...while it is the ++ operator that gives the C++
language its name, it also led to the first joke
made by anti-C++ programmers who have long
complained about the bug-ridden code that is too
often produced by sloppy C++ coding. This joke
points out that even the name of the language
contains a bug: ‘After all, it should really be called
++C, since we only want to use a language after it
has been improved.”

Sunday, July 05, 2009 3

Basic Java

Bytecode
Verifier

A 4

Class
Loader

Java Compiler

Network or File

| A\ 4
| Bytecode
Interpreter
Intermediate
Bytecodes v Just-In-Time
e Compiler
Runtime

Hardware

Basic Java

Tokens

& whitespace; comments: //, *...%[, [**...”/;
miscelleny: [, {, ++, etc.

¢ Unicode

very low-level facility
 dealt with before compiler proper sees input
« cf. C++ trigrams

16 bit encoding

all chars and Strings are Unicode
e \u005c\u0022” == “\""

2

o

« 2620 ==

Basic Java

« ldea is for all source to be Unicode too:

public class HelloUni
{
public static void main (String [] args)
{
System.out.println ("Hello, World");
}

public class HelloUni

{

\u0070\u0075\u0062\u006c\u0069\u0063
\u0073\u0074\u0061\u0074\u0069\u0063
\u0076\u006£\u0069\u0064 \u006d\u0061\u0069\ul06e
\u0028\u0053\u0074\u0072\u0069\u006e\u0067 \u005b\u005d
\u0061\u0072\u0067\u0073\u0029

\u007b

\u0053\u0079\u0073\u0074\u0065\u006d\u002e\u006£\u0075\u007
4\u002e\u0070\u0072\u0069\u006e\u0074\u006c\ull6e
\u0028\u0022\u0048\u0065\u006c\u006c\u006£\u002¢c
\u0057\u006£\u0072\u006c\u0064\u0022\u0029\u003b
\u007d
}

Sunday, July 05, 2009

Basic Java

= No preprocessor
¢ hooray!
¢ no #define
= public static final int CONST = 99;
~ NO Macros
¢ no #include
= import
- packages
¢ no conditional compilation
= constant folding instead: if (false) elided

Sunday, July 05, 2009

Basic Java

» Reserved words
¢ 59. all lower case: if; class; interface; try, etc.

¢ const, goto: there but do nothing

~“...may allow a Java compiler to produce better
error messages If these C++ keywords incorrectly
appear in Java programs.”

« ldentifiers
& whiteThé; X 1= x; a_double; the$thing
¢ fully qualified: java.lang.String.toString ()

=« Literals

¢ “‘Hello World”; OXCAFEBABE: 3.14D; 99L: 0777;
“this” + “that” == “thisthat”; \u2297’ == ‘¢’

Sunday, July 05, 2009

Basic Java

» Basic flow of control

& mostly as in C/C++

~no goto
* labelled statements

if (conditionO0)

{

statement (s) ;

}

else if (conditionl)

{

statement (s) ;

}

else

{

statement (s) ;

}

Sunday, July 05, 2009

for (initial; condition; progress)

{

statement (s) ;

}

for (; 7))
{

statement (s) ;

if (condition) {
break;
statement (s) ; }
}
do

for (; 7)) (

while (condition)

statement (s) ;

TEST:
if (check (i))
{
for (int j = 0; j < 10; j ++)
{
if (j > i) break;
if (a [i][j] == null)
break TEST;
// do something ...
}

}
// break TEST goes to HERE!

switch (expression)
{
case vO0:
statement (s) ;
break;

case vi:

case v2:
statement (s) ;
break;

default:
statement (s) ;
break;

}

statement (s) ;

} while (condition);

Basic Java

« Types
¢ 4 categories
- primitive types
- class types
- array types
~ interfaces
« Data values

¢ 2 categories
- primitive values

- references
* type-bound pointers

Sunday, July 05, 2009

10

Basic Java

= Primitive types

¢ 3 categories

- arithmetic
* integral: byte (8); short (16); int (32); long (64)
« floating point: float (32); double (64)
« promotion: byte=short=int=long=float=>double
« all types are signed

- boolean
* true/false
* no automatic conversions: if (some_value) not allowed

- character
* Unicode (16 bits), ASCII is a standard subrange

« always unsigned: (int) char may produce a negative

number
Sunday, July 05, 2009 11

Basic Java

« Operators
¢ standard C set

¢ additions
= >>> agnd >>>=

- all integral types are signed, so >> uses sign extension
11101000 (-24) >> 2 gives 11111010 (-6)
* 11101000 >>> 2 gives 00111010 (58)

~&and | (vs. && and ||)
+ string concatenation: +
~ instanceof

¢ subtractions
=, operator restricted use; no sizeof operator

Sunday, July 05, 2009

12

Basic Java

Classification Operator

Arithmetic + -/ * % ‘unary -’

Relational < <= >= > == I=

Logical && || ' & |

Bitwise ~ N> O>> | &

Miscellaneous ?: (type) instanceof new

Assignment = 4= -= *= [= = >>= >>>= <<= &= "= |=
Autoinc (dec) rement ++ --

short countBitsInAnInt ()
{

int u = ~0; // set u to all 1s {
short n = 0; int x = 99,
do y = 0;
{ if ((y '=0) && ((x / y) > 10))
n ++; nothing gets done here...;
} while ((u >>>= 1) !'= 0);

return (n);

}

public class Auto

{

public static void main (String [] args)

{

{ int v;
x = 99;
y =1; v =0;
if ((x += y) == 100) System.out.println ("v ++: " + v ++);
something gets done ...;
v =0;
System.out.println ("++ v: " + ++ v);

}
Sunday, July 05, 2009

Basic Java

» Casting

¢ type conversions
~long alLong = (long) anint;

e asin C/C++

& assertions

- not the same as in C/C++

= Circle ¢ = (Circle) hashtable.get (“key”);

assertion: the ‘real’ (dynamic)
type of this object is Circle
(“downcasting”)

o

L

defined (static)
return type is Object

- if the assertion turns out to be false a
ClassCastException is thrown

Sunday, July 05, 2009

14

Basic Java

= Miscelleny
¢ class-level declarations can be in any order
¢ can't redefine variables within a method

void differences
+ no cast -> void
~no void in parameter lists
= no pointers, so no void *

¢ also missing: pubLic void method 0
. int i = 0;
& bltfleldS if{()
int i; // Variable 'i' is already defined in this method.
- typedefs N
- varargs

~enums
Sunday, July 05, 2009

15

Basic Java

« Arrays

¢ conglomerations of data
- all of identical type

¢ usually must be “new’ed”
- different to most other languages
- possibly more flexible

~can be created statically if initial contents
Known

int [] knownThings = {7, 3, 8, 13};

¢ possess a ‘length’ attribute

int [] array = new int [10];

public void fillArrray ()
{

for (int x = 0; x < array.length; x ++) array [x] = x;

}

 anonymous arrays

long first5Total = sum (new int [] {1, 2, 3, 4, 5});
stdout.println (new char [] {‘'h’, ‘i’});

Sunday, July 05, 2009

16

Basic Java

= Class types

& a class is a recipe; an object is an instance of
that recipe (created by the ‘new’ operator)
-~ we specify classes but deal with (references to)

objects
 c.f.. recipes and cakes

~the JVM loads classes dynamically “as needed”
(i.e. when the program needs to make an object)

* may also fetch a class from across a network before
loading it

= Interfaces

¢ a mechanism for specifying the way in which an
object should be used (a ‘protocol’ or ‘contract’)

Sunday, July 05, 2009

Basic Java

= Primitive values
& indivisible—ints, chars, etc.
& associated location has a fixed type
¢ unshared
= References
¢ Java’s version of pointers “behind the scenes”
- always bound to a given type (hierarchy)

& a given location may store values of many
different (perhaps related) types over time

¢ composite data
¢ addresses—arrays (incl. Strings); objects

Sunday, July 05, 2009 18

Basic Java

= NO POINTERS

¢ A Good Thing: “goto of data structures”
& objects handled by reference

¢ Obj == Obj1 doesn’t work as expected:
+ Obj.equals (Obj1)

public static void main (String [] args)
{
if (new Integer (3) == new Integer (3))
System.out.println ("Same references!");
if (new Integer (3).equals (new Integer (3)))
System.out.println ("Same values!");

}

& all objects must be new’ed (including arrays)

Sunday, July 05, 2009 19

Basic Java

« Garbage collection

& programmers don’t dispose of allocated memory

by hand—the runtime system does this
- generally A Good Thing—bye bye memory leaks

« EXxceptions
¢ an ‘out-of-band’ signalling mechanism
¢ similar to C++ but better
- the ‘finally’ section is Another Good Thing
=« Threads

¢ “‘multiple concurrent loci of execution”

- 1.e. allowing more than one thing to be done at a
time...

¢ synchronized keyword
+ resource control for competing threads

Sunday, July 05, 2009

20

