Distributed Systems

“Java is supposed to become the premier tool
for connecting computers over the Internet. In
this realm, Java mostly lives up to the hype.”

‘I know of this bridge for sale...real cheap.”

Sunday, July 05, 2009



Distributed Systems

Client/Server: Various GUT, PC's as
terminals, (diskless) Workstations, X
terminals, sets of specific servers,
decentralised management

Mainframes: ASCIT display,

server model, centralised

management, proprietary
Network Computing: Browser
(universal?) GUI, simplified access,
true distributed computing,

centralised management,
heterogeneous appl" servers




Distributed Systems

/ % Tlmesharlng %\ . J' %

\’ | %% % "r“ P %{‘r ‘ﬂ
£ ‘rt * up
Batch ﬂ%f
w |
% - ‘%f Workstations
[

\J' Network
Computing
W =

/4

Distribution of Data and Function
+ Distribution of Computation



Distributed Systems

= Impetus for distribution

User Interface

S-ysTer»hr B

A
Functions &

Prj‘ocedu;es

S;éfehﬁ C

Data A&’
System A

System D

Sunday, July 05, 2009



Distributed Systems

= Benefits and difficulties

Resource Use

¢ Improved resource
access

¢ Resource sharing
Applications
¢ Multi-user applications

¢ Standard software
applications

System Performance

¢ Efficiency, availability,
flexibility

B

B

B

B

Failure Detection

¢ Hardware and/or
Software and/or
Network

Complexities

¢ Development, System,
Management, etc

Security issues
Data integrity

¢ Synchronisation,
Transactional
properties..



Distributed Systems

= Facilities found in java.net package
¢ URL class

¢ URLConnection class
- work with URLs
- more control/sophistication than with URL class
 also HitpURLConnection for HTTP-specific operations
& Sockets
= UNIX-style networking
» Socket

 ServerSocket
* |netAddress

¢ Datagrams
+raw transmit/receive facility

Sunday, July 05, 2009

abstraction



Distributed Systems

=« URL class

# allows data to be retrieved according to specified
location

~openConnection
- openStream
- getContents

& parses and extracts portions of a given URL
- get{File, Host, Port, Protocol, Ref}
~sameFile

Sunday, July 05, 2009



Distributed Systems

import java.io.*;
import java.net.¥*;

public class URLMisc
{
public static String fetch (String address)
throws MalformedURLException, IOException
{
URL url = new URL (address);
return ((String) url.getContent ()

}

public static void info (URL address)
{
System.out.println (“Host: “ + address.getHost ())
System.out.println (“Port: “ + address.getPort ())
System.out.println (“File: “ + address.getFile ());
if (address.equals (new URL (“http://www.microsoft.com”)))
System.out.println (“All hail Bill the bountiful!”);

}

Sunday, July 05, 2009


http://www.microsoft.com

Distributed Systems

» URLConnection class
¢ gives more control over the downloading process

# can find out more about the contents
- getContent
- getHeaderField, getHeaderField{Int, Date}
- setUseCaches
- setlfModifiedSince
= setDo{Input, Output}
~ setAllowUserlnteraction
- efc.

Sunday, July 05, 2009 9



Distributed Systems

import java.io.¥*;
import java.net.*;

public class GetURLInfo

{

public static void printinfo (URLConnection u) throws IOException

{
System.

System.
System.
System.
System.
System.
System.

out.
out.

out

out.
out.

out
out

println
println
.println
println
println
.println
.println

DataInputStream in

for (int i = 0;

{

(“URL: “ 4+ u.getURL () .toExternalForm () + “:”);

(" Content Type: “ + u.getContentType ())

(“ Content Length: “™ + u.getContentLength ());

(" Last Modified: “ + new Date (u.getLastModified ())):;
(Y Expiration: “ + u.getExpiration ());

(Y Content Encoding: “ + u.getContentEncoding ());

(“First five lines:”);

= new DataInputStream (u.getInputStream ());
i< 5; 1 +4)

String line = in.readLine ()
== null) break;
System.out.println (% “ + line);

if (1

}

}

ine

public static void main (String [] args)
throws MalformedURLException, IOException

{
URL url

}

} Sunday, July 05, 2009

new URL (args [0]);
URLConnection connection = url.openConnection () ;
printinfo (connection);

10



Distributed Systems

= Sockets

¢ ‘UNIXey’ view of the world
-~ has been successful
+ native sockets very fiddly to use in the “real world”

¢ Client-Server paradigm
¢ useful for working with non-web/legacy systems

¢ Java’'s sockets abstraction is relatively easy to
use

Sunday, July 05, 2009 11



Distributed Systems

= ServerSocket class
& server side of a connection
& returns a new Socket for the connection proper
- associated I/O streams do the real work
¢ some methods:
—accept
- get{InetAddress, LocalPort}

 returns the local {address, port} of this server socket

-~ setSoTimeout
 the ServerSocket will block for only this amount of time

Sunday, July 05, 2009 12



Distributed Systems

import java.io.*;
import java.net.¥*;
class BareBonesServer

{

public static void main (String [] args)
{

ServerSocket listen socket = null;

try
{

listen socket = new ServerSocket (8888);

}
catch (IOException e)

{1}
for ( ; ;)
{
try
{

new Thread (new Connection (listen socket.accept ())).start ();

}
catch (IOException e)

{1}
}

Sunday, July 05, 2009

13



Distributed Systems

class Connection implements Runnable
{
private DataInputStream in = null;
private DataOutputStream out = null;
private Socket client = null;

public Connection (Socket client)
{
try
{

this.client = client;
in = new DataInputStream (client.getInputStream ());

out = new DataOutputStream (client.getOutputStream ());

}
catch (IOException ioe) { }

}
public void run ()

// read from in, do work, write results to out

}

protected void finalize () throws Throwable
{ super.finalize (); doFinalization (); }

public void doFinalization () throws Throwable ¥
{
if (out '= null) { out.close (); out = null; }
if (in '= null) { in.close (); in = null; }
if (client !'= null) { client.close (); client = null; }
} spawned

}
Sunday, July 05, 2009 threads 14



Distributed Systems

= Socket class
# client side of a connection
= point-point, bidirectional
~ either datagram or stream based

& extensible

- could extend to do authentication/encryption,
say...

¢ socket options
- support popular BSD-style options

 “If there's other options you'd like to use from Java tell
u_s!”

« |InetAddress class
¢ represents an internet address

Sunday, July 05, 2009



Distributed Systems

import java.io.*;
import java.net.¥*;
class SocketClient

{

public static void main (String [] args)
{

Socket server = null;

try
{

server = new Socket (args [0], 8888);
System.out.println ("Connected to: " + server.getInetAddress () +

":" + server.getPort ());
DoSomething (server.getInputStream (), server.getOutputStream ());
}
catch (IOException ioe) { /* SQUELCH! */ }

finally
{

if (server '= null)
try { server.close (); server = null; } catch (IOException ioce) { }

}
}
private static void DoSomething (InputStream in, OutputStream out)

{

// this is where the work of the client gets done..
// read from in, write to out
// close in & out

}
}

Sunday, July 05, 2009

16



Distributed Systems

= showDocument
¢ in AppletContext class
& “one-stop shop” for HTML pages

¢ showDocument (url {, target})

+target identifies a frame—may be:

° “_top”’ “_Self”, “_parent”
e “ blank”
e name of a frame

- not all browsers need support this
» AppletViewer doesn't

Sunday, July 05, 2009

17



Distributed Systems

« Applet (net) security

¢ (by default) applets can only connect to their
serving host

¢ why? covert channels!

http:/lwww.rogue.com/cgi-bin/cracker.pl?Bobs+password+is+StupidComputer
http://www.rogue.com/Bobs/password/is/StupidComputer

Sunday, July 05, 2009

18


http://www.rogue.com/cgi-bin/cracker.pl?Bobs+password+is+StupidComputer
http://www.rogue.com/Bobs/password/is/StupidComputer

Distributed Systems

« Datagrams
& ‘raw’ transmission facility
¢ one-off packets
¢ delivery/sequence, etc. not guaranteed
¢ suitable for
~ quick query-response applications

+ situations where efficiency vital
* rare

¢ DatagramPacket class

- construct & provide info regarding the data to
send/receive

Sunday, July 05, 2009 19



Distributed Systems

DatagramSocket dgSocket = null;
try
{
dgSocket = new DatagramSocket () ;
int port = Integer.parselInt (args [1])
InetAddress address = InetAddress.getByName (args [0]);

DatagramPacket request = new DatagramPacket (sendBuf, 256, address, port);

dgSocket.send (request);

DatagramPacket reply = new DatagramPacket (sendBuf, 256);
dgSocket.receive (reply):;
String received = new String (reply.getData ())
System.out.println (“Got: " + received);
}
catch (IOException e)
{1}
finally
{
if (dgSocket !'= null}
try {dgSocket .close (); dgSocket = null; } catch (IOException ioce) { }
}

Sunday, July 05, 2009

20



Distributed Systems

2-Tiered approach
+ Client/Server
¢ Separation of shared components
® No clear rules for separating C/S
¢ Rapid development and deployment
¢ Not particularly flexible

¢ e.g Simple Web, Application / Database,
Application / Services models

Services

HiN



Distributed Systems

3-Tiered approach

Extension to Client/Server component
software model: more clearly defined
separation & factoring

Utilise abstract interfaces

Value-add services OHJ% -
Wrap Iegacy systems
Wrappe ’
'*

“QOQ’

Legacy System

A
T =ﬁ
@ 2 000
Middleware Service: but actually

Business Logic

L0



Distributed Systems

n-Tiers
& Abstraction and division of functionality—
logical distribution of application components

¢ Peer to peer components

User .
N
C Tragy Database
ommerce action




Distributed Systems

= Consider a classic/hypothetical call centre
application:
¢ Forms-like data entry in a user interface
¢ Data verification
¢ Database connectivity (e.g DB2) & retrieval
¢ Possible intermediate processing of data
¢ Delivery of (likely enhanced) data back to client
¢ Display and interaction
¢ etc

Sunday, July 05, 2009

24



Distributed Systems

Browser-Based Java Solution ()

¢ Thinnest client-side solution—uses HTML
forms and HTTP

¢ No validation on client, possibly tedious Ul
¢ Minimal client requirements

¢ Increased complexity in servlet—greater
resource requirement?

Browser

Web Server

f 15
m|

Q

Java

HTML Servlet

DB Magr.




Distributed Systems

Browser-Based Java Solution ()

& Thin client-side solution—uses HTML forms,
HTTP, and Javascript (or similar) for entry
validation

& Removes some reliance on servlet
& Some additional resource load on client
¢ Javascript not supported everywhere

¢ Thinnest “fully featured” Ul—good WWW
solution Browser

Web Server
f/ %
HTML &
J/Script Java DB Mgr.
Servlet




Distributed Systems

Browser-Based Java Solution (lll)

¢ Less thin client-side solution—uses Applet and
HTTP (or RMI, CORBA/IIOP, JDBC, etc)

¢ Removes some (or even all) reliance on servlet,
depending on distribution requirements

¢ Does not necessarily require Browser
¢ Comprehensive, flexible Java solution

Browser/appletviewer

v
Web Server
JDBCH jb

m
O

Applet

Java

Servlet DB Mgr.




Distributed Systems

» Full application—Java solutions

Database
Manager

Sockets
Server

RMI
Server

Database

~/

Similarly for
CORBA

¢ Comprehensive, flexible
Intranet solutions

¢ allows leveraging of most
appropriate protocols and
distribution model

¢ Sockets or wrapping
needed to integrate with
legacy network services &
apps

¢ RMI best for 100% Java

¢ CORBA may be best to

iIntegrate mixed
technology environments

28



Distributed Systems

« Considerations

¢ \What is the userbase?
= Intranet
- Extranet
= Internet

¢ Requirements of application user interface and
service/server components

¢ Resources available on client and server systems
¢ Development time, cost and resources

¢ |s Java to be / being used everywhere

¢ Are legacy systems to be retained

¢ Required distribution model & infrastructure granularity

- e.g full distributed object availability and management, or
simple network protocols

Sunday, July 05, 2009 29



