Exceptions & Threads

= EXxceptions

“If anything can go wrong, it will.
—Finagle's Law (often incorrectly attributed to Murphy, whose law is
rather different—which only goes to show that Finagle was right)”

¢ a mechanism for generating “out-of-band”
notifications regarding the occurrence of
exceptional events

/

My
~ hodcan;t::::\

i qa\we>
/\L check

check

\/

X

.\\

A

exception

check

handler
Sunday, July 05, 2009 1

Exceptions & Threads

« EXxceptions extend java.lang.Throwable

¢ 2 main categories:
~ Exception: programmatic faults, etc.

+ 2 sub-categories:
« “if it's a RuntimeException, it’s your fault. Fix your code.”
— ArraylndexOutOfBoundsException, bad cast, etc.

— don’t need to explicitly declare these; assumed to be
widespread (“unchecked exceptions™)

« others
— read past end of file, malformed URL, etc.
= Error: internal defects and resource exhaustions
* not for mere mortals
* not usually explicitly mentioned

Sunday, July 05, 2009

Exceptions & Threads

Methods must state the (non-RuntimeException)
exceptions they throw (define the OOB channel):

public int myDivide (int x, int y) throws ArithmeticException
{

if (y == 0)
throw new ArithmeticException () ;
else

return (x / y);

}
Exception/constructor isn’t anything special:

public int myDivide (int x, int y) throws MyArithmeticException
{

if (y == 0)
throw new MyArithmeticException (“Naughty, naughty!”, 123);
else

return (x / y);

}

Sunday, July 05, 2009 3

Exceptions & Threads

class MyArithmeticException extends java.lang.ArithmeticException

{

private int errorNo;

public MyArithmeticException (String s, int e)

{

super (s);

errorNo = e;

}

public int getErrno ()
{

return (errorNo) ;

}

Sunday, July 05, 2009

Exceptions & Threads

» Dealing with exceptions

// declare file, num, denom

try
{

// open file, read num, denom.
int result = myDivide (num, denom) ;

}
catch (final MyArithmeticException e)

{
stdout.println (e.getMessage () + ™

e.printStackTrace () ;
throw e; // to enclosing environme

}
catch (final IOException e)

{ ..

nt

“ + e.getErrno ());

\

order: specific -> general

} N

catch (final Exception e)

{ ..
; -
Introduced in 494

finally
(P N

// close file.guaranteed regardless
}
Sunday, July 05, 2009

Exceptions & Threads

= EXxceptions are not a panacea
¢ intended for rare, exceptional events
& slow: lots of housekeeping involved
¢ don’t micromanage
= catch everything individually
¢ don’t squelch
= catch everything generically

~Ignore
« Experience plays a large part in defining
exceptions &

¢ eg. java.io.EOFException

Sunday, July 05, 2009

Exceptions & Threads

= Ihreads

& objects and parallelism naturally go together

+ object encapsulates data & processing
specification

-~ may as well encapsulate actual processing ...
¢ give illusion of doing > 1 thing at a time

- better apparent performance

- better resource utilization

-~ needed for applets over a slow internet!

} 1 CPU; multiple threads

Sunday, July 05, 2009

Exceptions & Threads

« Thread defined by:

¢ implementing java.lang.Runnable

+ can be used whether or not a class extends
another

class AnyClass extends Applet implements Runnable
{ ..}

- this is the ‘preferred’ method

¢ extending java.lang.Thread

- only possible if class doesn’t already
extend something

OR

class AnyClass extends Thread <
{ ...}

Sunday, July 05, 2009

Exceptions & Threads

public class EZTest
{

public static void main (String [] args)
{
new Thread (new EZThread (), "hickory") .start (),
new Thread (new EZThread (), "dickory") .start (),
new Thread (new EZThread (), "dock").start ()

}
}

class EZThread implements Runnable

{
public void run () // eventually called by Thread.start ()

{
String threadName = Thread.currentThread () .getName () ;

for (int x = 0; x < 3; x ++)
{
System.out.println (x + " " + threadName) ;
try { Thread.sleep ((int) (Math.random () * 1000)); }
catch (InterruptedException ie) { }

}

System.out.println (threadName + " has expired");

}
}

Sunday, July 05, 2009

Exceptions & Threads

public class EZTest

{
public static void main (String [] args)
{
new EzThread (h:!'Ckory) .start (); D:\Bob\Java\EZThread>java EZTest
new EZThread (“dickory”) .start (); 0 hickory
new EZThread (“dock”) .start ():; 0 dickory
0 dock note random, undefined
} 1 hickory ordering
} 1 dock
1 dickory
class EZThread extends Thread 2 hickory
2 dickory
{ dickory has expired
public EZThread (String str) 2 dock
{ super (str) . } hickory has expired

dock has expired
public void run () // called by start ()
{
for (int x = 0; x < 3; x ++)
{
System.out.println (x + “ “ + getName ());
try { sleep ((int) (Math.random () * 500)); }
catch (final InterruptedException ie) ({}
}
System.out.println (getName () + “ has expired”);
}
}

Sunday, July 05, 2009

Exceptions & Threads

» 4 possible thread states (lifecycle)
& new
¢ runnable

¢ not runnable
- waiting, suspended, sleeping, blocked on 1/O, etc.

¢ dead

runnable

various stop (), or run () exits

reasons

not
runnable

stop ()
Sunday, July 05, 2009 11

Exceptions & Threads

=« Thread exceptions
¢ lllegalThreadStateException
~e.g. resume () on sleeping thread
¢ InterruptedException
¢ lllegalMonitorStateException
= try to wait but not in synchronized code
¢ ThreadDeath (extends java.lang.Error)

= sent to kill a thread

= can be caught to allow cleanup but must be re-
thrown

¢ eftc.

Sunday, July 05, 2009 12

Exceptions & Threads

= Some thread methods
& sleep
¢ yield
+accounts for “green threads” implementations
¢ isAlive
~ coarse: can't distinguish between various states
¢ setPriority

- at any given time, the “runnable” thread with the
highest priority will be running

¢ setDaemon
- background thread

- Java machine will exit if only daemon threads
alive

Sunday, July 05, 2009 13

Exceptions & Threads

= Thread groups
¢ all threads are members of a group
< 1 default group

& provides a way of dealing with related threads in
one go
- set priority bands
- start, suspend, etc.
- apply access privileges
- efc.

Sunday, July 05, 2009

14

Exceptions & Threads

= Synchronization
¢ races, deadlocks, etc. highly problematic

¢ Java provides Hoare monitors
~ every object has a lock

= synchronized methods use lock to ensure only 1
thread active within a monitor instance at any time

synchronized int myMethod ()
{ ... }

- synchronizing whole method inefficient

int myMethod ()
{
// pre (or post) non-critical sections
synchronlzed (anObjectOrThis)
{ ...}
}
Sunday, July 05, 2009 15

Exceptions & Threads

¢ can also synchronize to the class

- (actually, to the associated java.lang.Class
object...)

- static synchronized method ()
» serialize shared access to static data

Sunday, July 05, 2009

16

Exceptions & Threads

« Synchronized not enough
¢ just provides mutual exclusion to a critical section

& also need to account for changing conditions
- wait
* (releases lock; waits; recovers lock; continues...)

= notify, notifyAll

waiting on

waiting on v synchronization
condition

Sunday, July 05, 2009 17

Exceptions & Threads

class Monitor extends SimpleBoundedBuffer

{
public synchronized void put (int x) throws InterruptedException

{

while (numberContained == MAX) wait ()
add it (x);
if (numberContained++ == 0) notifyAll () ;

}

public synchronized int get () throws InterruptedException
{

while (numberContained == 0) wait ()
int it = remove it ()’

if (numberContained-- == MAX) notifyAll ();

return (it);

}

Sunday, July 05, 2009

18

Exceptions & Threads

« Notify versus notifyAll
¢ 1vs. all

& consider notify an optimised form of notifyAll

+e.g. notify is not fair: doesn’t account for priority or
length of time a thread has been waiting

CX (D resource f X

7Y ilabilit barrier
\ ﬂ availability 1 1
\JZ

Sunday, July 05, 2009 19

