
Basic Java

Sunday, July 05, 2009 1

// Hello.java-the traditional first application
public class Hello
{
public static void main (String [] args)
{
System.out.println (”Hello JAVA!”);
}

}

Similar to C/C++

probably accounts for it’s popularity

// Echo.java-the traditional second application
public class Echo
{
public static void main (String [] args)
{
for (int i = 0; i < args.length; i++)
System.out.println (args [i]);

}
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 2

// Echo11.java-the traditional second application
// modified for Java 1.1
public class Echo11
{
private static PrintWriter stdout = new PrintWriter (System.out);

public static void main (final String [] args)
{
for (int i = 0; i < args.length; i++)
stdout.println (args [i]);

stdout.flush ();
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 3

“…while it is the ++ operator that gives the C++
language its name, it also led to the first joke
made by anti-C++ programmers who have long
complained about the bug-ridden code that is too
often produced by sloppy C++ coding. This joke
points out that even the name of the language
contains a bug: ‘After all, it should really be called
++C, since we only want to use a language after it
has been improved.’”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 4

Source

Java Compiler

Intermediate
Bytecodes

Network or File

Bytecode
Interpreter

Java
Runtime

Just-In-Time
Compiler

Hardware

Bytecode
Verifier

Class
Loader

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 5

n Tokens
uwhitespace; comments: //, /*…*/, /**…*/;

miscelleny: [, {, ++, etc.
uUnicode

Fvery low-level facility
• dealt with before compiler proper sees input
• cf. C++ trigrams

F16 bit encoding
Fall chars and Strings are Unicode

• “\u005c\u0022” == “\””

• ‘\u2620’ ==

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 6

n Idea is for all source to be Unicode too:

public class HelloUni
{
public static void main (String [] args)

{
System.out.println ("Hello, World");
}

}

public class HelloUni
{
\u0070\u0075\u0062\u006c\u0069\u0063

\u0073\u0074\u0061\u0074\u0069\u0063
\u0076\u006f\u0069\u0064 \u006d\u0061\u0069\u006e
\u0028\u0053\u0074\u0072\u0069\u006e\u0067 \u005b\u005d
\u0061\u0072\u0067\u0073\u0029

\u007b

\u0053\u0079\u0073\u0074\u0065\u006d\u002e\u006f\u0075\u007
4\u002e\u0070\u0072\u0069\u006e\u0074\u006c\u006e
\u0028\u0022\u0048\u0065\u006c\u006c\u006f\u002c
\u0057\u006f\u0072\u006c\u0064\u0022\u0029\u003b

\u007d
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 7

n No preprocessor
uhooray!
uno #define

Fpublic static final int CONST = 99;
Fno macros

uno #include
F import
Fpackages

uno conditional compilation
Fconstant folding instead: if (false) elided

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 8

n Reserved words
u59. all lower case: if; class; interface; try, etc.
uconst, goto: there but do nothing

F “…may allow a Java compiler to produce better
error messages if these C++ keywords incorrectly
appear in Java programs.”

n Identifiers
uwhîteThé; X != x; a_double; the$thing
u fully qualified: java.lang.String.toString ()

n Literals
u “Hello World”; 0xCAFEBABE; 3.14D; 99L; 0777;

“this” + “that” == “thisthat”; ‘\u2297’ == ‘'’

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 9

n Basic flow of control
umostly as in C/C++

Fno goto
• labelled statements

do
{
statement(s);
} while (condition);

while (condition)
{
statement(s);
}

for (initial; condition; progress)
{
statement(s);
}

switch (expression)
{
case v0:

statement(s);
break;

case v1:
case v2:

statement(s);
break;

default:
statement(s);
break;

}

if (condition0)
{
statement(s);
}

else if (condition1)
{
statement(s);
}

else
{
statement(s);
}

TEST:
if (check (i))

{
for (int j = 0; j < 10; j ++)

{
if (j > i) break;
if (a [i][j] == null)

break TEST;
// do something ...
}

}
// break TEST goes to HERE!

for (; ;)
;

for (; ;)
{
statement(s);
if (condition)

break;
statement(s);
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 10

n Types
u4 categories

Fprimitive types
Fclass types
Farray types
F interfaces

n Data values
u2 categories

Fprimitive values
F references

• type-bound pointers

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 11

n Primitive types
u3 categories

Farithmetic
• integral: byte (8); short (16); int (32); long (64)
• floating point: float (32); double (64)
• promotion: byteðshortðintðlongðfloatðdouble
• all types are signed

Fboolean
• true/false
• no automatic conversions: if (some_value) not allowed

Fcharacter
• Unicode (16 bits), ASCII is a standard subrange
• always unsigned: (int) char may produce a negative

number

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 12

n Operators
ustandard C set
uadditions

F>>> and >>>=
• all integral types are signed, so >> uses sign extension
• 11101000 (-24) >> 2 gives 11111010 (-6)
• 11101000 >>> 2 gives 00111010 (58)

F& and | (vs. && and ||)
Fstring concatenation: +
F instanceof

usubtractions
F , operator restricted use; no sizeof operator

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 13

Classification Operator

Arithmetic + - / * % ‘unary -’
Relational < <= >= > == !=
Logical && || ! & |
Bitwise ~ ^ << >> >>> | &
Miscellaneous ?: (type) instanceof new
Assignment = += -= *= /= %= >>= >>>= <<= &= ^= |=
Autoinc(dec)rement ++ --

{
int x = 99,

y = 0;
if ((y != 0) && ((x / y) > 10))

nothing gets done here...;

a = b = c = 0;

public class Auto
{
public static void main (String [] args)

{
int v;

v = 0;
System.out.println ("v ++: " + v ++);

v = 0;
System.out.println ("++ v: " + ++ v);
}

}

{
x = 99;
y = 1;
if ((x += y) == 100)

something gets done ...;

short countBitsInAnInt ()
{
int u = ~0; // set u to all 1s
short n = 0;
do

{
n ++;
} while ((u >>>= 1) != 0);

return (n);
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 14

n Casting
u type conversions

F long aLong = (long) anInt;
• as in C/C++

uassertions
Fnot the same as in C/C++
FCircle c = (Circle) hashtable.get (“key”);

F if the assertion turns out to be false a
ClassCastException is thrown

defined (static)
return type is Object

assertion: the ‘real’ (dynamic)
type of this object is Circle

(“downcasting”)

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 15

n Miscelleny
uclass-level declarations can be in any order
ucan’t redefine variables within a method
uvoid differences

Fno cast -> void
Fno void in parameter lists
Fno pointers, so no void *

ualso missing:
Fbitfields
F typedefs
Fvarargs
Fenums

public void method ()
{
int i = 0;
if (…)

{
int i; // Variable 'i' is already defined in this method.
…
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 16

n Arrays
uconglomerations of data

Fall of identical type
uusually must be “new’ed”

Fdifferent to most other languages
Fpossibly more flexible
Fcan be created statically if initial contents

known

upossess a ‘length’ attribute

uanonymous arrays

int [] array = new int [10];
...
public void fillArrray ()

{
for (int x = 0; x < array.length; x ++) array [x] = x;
}

int [] knownThings = {7, 3, 8, 13};

long first5Total = sum (new int [] {1, 2, 3, 4, 5});
stdout.println (new char [] {‘h’, ‘i’});

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 17

n Class types
ua class is a recipe; an object is an instance of

that recipe (created by the ‘new’ operator)
Fwe specify classes but deal with (references to)

objects
• c.f.. recipes and cakes

F the JVM loads classes dynamically “as needed”
(i.e. when the program needs to make an object)

• may also fetch a class from across a network before
loading it

n Interfaces
ua mechanism for specifying the way in which an

object should be used (a ‘protocol’ or ‘contract’)

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 18

n Primitive values
u indivisible—ints, chars, etc.
uassociated location has a fixed type
uunshared

n References
uJava’s version of pointers “behind the scenes”

Falways bound to a given type (hierarchy)
ua given location may store values of many

different (perhaps related) types over time
ucomposite data
uaddresses—arrays (incl. Strings); objects

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 19

n NO POINTERS
uA Good Thing: “goto of data structures”
uobjects handled by reference
uObj == Obj1 doesn’t work as expected:

F Obj.equals (Obj1)

uall objects must be new’ed (including arrays)

Object
ref1

ref
public static void main (String [] args)

{
if (new Integer (3) == new Integer (3))
System.out.println ("Same references!");

if (new Integer (3).equals (new Integer (3)))
System.out.println ("Same values!");

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Basic Java

Sunday, July 05, 2009 20

n Garbage collection
uprogrammers don’t dispose of allocated memory

by hand—the runtime system does this
Fgenerally A Good Thing—bye bye memory leaks

n Exceptions
uan ‘out-of-band’ signalling mechanism
usimilar to C++ but better

F the ‘finally’ section is Another Good Thing
n Threads
u “multiple concurrent loci of execution”

F i.e. allowing more than one thing to be done at a
time…

usynchronized keyword
F resource control for competing threads

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

