
OOP With Java

Sunday, July 05, 2009 1

n Class == abstraction
uconcept, real-world ‘thing’, etc.
ualso a packaging mechanism

n Object == concrete instance of a class

method

data

2550

50

circ {} area {}

Circle class == abstract Circle object == concrete

circ {} area {}

ry

x

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 2

n Class Circle
ua class is an encapsulation of data & methods

uAn object is an instance of a class
Fcreated by applying the new operator to the

class’ constructor

public class Circle extends Shape
{
public double x,

y,
r;

public double circ ()
{
return (2 * (Math.PI * r));
}

public double area ()
{
return (Math.PI * (r * r));
}

}

circ {} area {}

ry

x

{
Circle c = new Circle ();
c.x = c.y = 50.0; c.r = 2.4;
double theArea = c.area ();

constructor

method callTra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 3

n Constructors
uhave the same name as the class
uno return type specified; type implied
ucan be > 1 for different situations:

public class Circle extends Shape
{
…
public Circle ()
{ // create a default circle
this (0.0, 0.0, 1.0);
}

public Circle (double x, double y, double r)
{…}; // create with given properties

}

calls this constructor

‘this’ is a reference to the enclosing instance

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 4

ustatement that invokes ‘this’ must be the first in a
constructor

uobjects will get a default constructor
F if not explicitly provided
Fnumeric fields -> 0; references -> null

n No destructors
uObject finalization dealt with differently

F less satisfactorily?

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 5

n Object destruction
uno destructors as in C++
uJava uses garbage collection

Fobjects are reference counted
Fautomatic reclamation
Fmark large objects (e.g. big arrays no longer

needed) for early reclamation by setting reference
to null

Fcan invoke System.gc () directly

public static void main (String [] args)
{
double [] array = new double [100000];
doSomethingWith (array);
array = null;
…

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 6

n GC calls a finalizer

u invoked just before space is taken back
uno guarantees

FGC may never be invoked; no specified order, etc.
u finalizer may ‘resurrect’ an object

Fby saving the this reference somewhere ‘safe’
FBAD style!

uexceptions are ignored by runtime

protected void finalize () throws IOException
{
if (filedescr != null)
close ();

super.finalize ();
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 7

n Method overloading
umethods with same name

F int f (int);
Fdouble f (double)

ubased on a method’s signature
F [name, parameters (#, type)]

note: return type not considered
usaw this before: constructors

overloaded

public void print (int I);
public void print (long l);
public void print (char [] s);
public void print (String s);
public void print (boolean b);
…

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 8

n Primitive types passed by value only (ie Copies)
u references are primitive types!
uswap (X, X) not possible

Fsolution: pass elements via reference to array
public class CanSwap
{
private static final int APOS = 0, BPOS = 1;

private static void swap (final int [] a)
{ int t = a [APOS]; a [APOS] = a [BPOS]; a [BPOS] = t; }

public static void main (final String [] args)
{
int theInt0 = 0, theInt1 = 1;
// flashback to BASIC!!!
int [] intArray = {theInt0, theInt1};
swap (intArray);
theInt0 = intArray [APOS]; theInt1 = intArray [BPOS];
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 9

n Class/instance distinctions
u instance methods/data

F1 copy / object
uclass methods/data

F introduced by ‘static’ keyword
F1 copy shared between all instances
Fmethods have no ‘this’ reference

• can only act on parameters and class data

Fclosest Java gets to globals
• but no possibility of name ‘clashes’

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 10

public final class MyMath
{
public static final int PI = 3;

public static double square (final double n)
{
return (n * n);
}

…
}

{
double d = MyMath.square (MyMath.PI);

class name, not instance name

allocated once only

object

instance methods/data

class methods/data

class cannot
be extended

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 11

n Static initialisers
u [multiple] unnamed arbitrary code blocks

Fmultiple instances amalgamated according to
source-code order

u run once when class is first loaded
public final class MyMath
{
static private double [] sines = new double [1000];

// set up sine lookup table for speed
static
{
double x = 0.0,

dx = (Math.PI / 2) / (1000 - 1);

for (int i = 0; i < 1000; i ++)
{ sines [i] = Math.sin (x); x += dx; }

}
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 12

n Inheritance
umain impetus: enhance code reuse and quality

ueverything extends Object
Feven if nothing explicitly stated
Fdefault methods

• clone
• equals
• toString
• getClass
• etc.

public class FilledCircle extends Circle
{
…
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 13

umodels an IS-A relationship
Fa circle IS-A shape, which IS-A object

• a circle HAS-A x coordinate (which IS-A float)

uallows complex structures to be built up through
‘diffs’

ry

x

circ {} area {}

col

draw {}
only need to program this portion

FilledCircle IS-A Circle

this super

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 14

public class FilledCircle extends Circle
{
private Color col;

public FilledCircle (float x, float y, float r, Color col)
{
super (x, y, r);
this.col = col;
}

public void draw (Graphics g)
{
super.draw (g);
…; // do the special FilledCircle ‘magic’
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 15

n The ‘super’ keyword
u refers to immediate ‘ancestor’: “super.name is

treated exactly as if it had been the expression
((S)this).name; thus, it refers to the field named
name of the current object, but with the current
object viewed as an instance of the superclass.”

usuper.super.x illegal
Fuse ((SomeSuperClass) this).x explicitly

Circle FilledCircle
draw (g):
super.draw (g);
fillOval (...);

draw (g):
g.drawOval (…);

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 16

class T0
{
public int f () { return (0); }
}

class T1 extends T0
{
public int f ()

{
System.out.println ("\t" + super.f ());
return (1);
}

}
class T2 extends T1
{
public int f ()

{
System.out.println ("\t\t" + super.f ());
return (2);
}

}
public class Super
{
public static void main (String [] args)

{
System.out.println (new T2 ().f ());
}

}

>java Super
0

1
2

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 17

n Constructor chaining

uJava doesn’t do automatic finalize chaining
Fshould call super.finalize () explicitly at end

n Final classes
umay not be extended

F (also final methods)

new FilledCircle

fully instantiated
FilledCircle

Object Circle FilledCircleShape

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 18

C:\Chain>java Chain
Making a SuperSuper...
Making a Super...
Making a Chain...

C:\Chain>

public class Chain extends Super
{
public Chain ()

{
System.out.println ("Making a Chain...");
}

public static void main (String [] args)
{
new Chain ();
}

}

class Super extends SuperSuper
{
public Super ()

{
System.out.println ("Making a Super...");
}

}

class SuperSuper
{
public SuperSuper ()

{
System.out.println ("Making a SuperSuper...");
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 19

n Overriding
umethod with same signature as in superclass
uoverriding != overloading
uallows “Dynamic Dispatching” / “Late Binding”

FSquare, Circle extends Shape
Fcall to myShapeVariable.area ()

• whether circle or square’s area called depends on
dynamic type referenced by myShapeVariable

– all Java methods ≈ C++’s virtual by default
– (possibly) except if final

Fcan’t cast behaviour away
• don’t want programmer to be able to force call to

square’s area instead of circle’s

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 20

n Polymorphism/upcasting
u taking an object reference and treating it as a

reference to a less specialised type in the
inheritance tree

uuseful for “generic” structures
import java.util.*;
public class Poly
{
public static void main (String [] args)

{
Vector v = new Vector ();
v.addElement (new Circle (2));
v.addElement (new Square (2));
Enumeration e = v.elements ();
while (e.hasMoreElements ())

{
Shape s = (Shape) e.nextElement ();
if (s.area () > 2)

s.draw ();
}

}
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 21

interface Drawable { public void draw (); }

abstract class Shape implements Drawable
{
public abstract double area (),

circ ();
public abstract void draw ();
}

class Circle extends Shape
{
int radius;
public Circle (int radius) { this.radius = radius; }
public double circ () { return (2 * Math.PI * radius); }
public double area () { return (Math.PI * Math.pow (radius, 2)); }
public void draw () { … }
}

class Square extends Shape
{
int lengthOfSide;
public Square (int lengthOfSide) { this.lengthOfSide = lengthOfSide; }
public double area () { return (lengthOfSide * lengthOfSide); }
public double circ () { … }
public void draw () { … }
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 22

n Run-time type info.
u the class java.lang.Class

Fone instance for each loaded class
• created by runtime system

Fdescribes a class
• forName (String) returns info for a name
• isInterface
• getName
• getSuperclass
• newInstance
• etc.

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 23

import java.io.*;

public class SimpleReflectionTest
{
public SimpleReflectionTest()
{
System.out.println (this.getClass ().getName ());
}

// recall that main is a member of the class,
// not an instance, so make an instance of
// SimpleReflectionTest to reflect upon
public static void main (String [] args)
{
new SimpleReflectionTest();
}

}

u reflecting upon ‘this’ allows an object to find out
it’s name...

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 24

n Encapsulation
ucontrolling visibility

Fpackages
Fvisibility modifiers
F technique: getters & setters

ukey: don’t give away info. unless you absolutely
have to

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 25

n Packages
unamespace of related (cooperating?) classes

F java.awt.Frame; java.awt.event.ActionEvent
Fnot hierarchical, contrary to appearance
Fau.edu.dstc.bobs.stuff.MyClass.doSomething ()

upackage au.edu.dstc.bobs.stuff;
F first thing in file

uproposed naming convention:
Fbob@mach.net.dom -> dom.net.package.class….
Fshould get unique package names this way

package class field

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

mailto:bob@mach.net.dom

OOP With Java

Sunday, July 05, 2009 26

u∃ a default, unnamed package
Fclasses belong to this unless otherwise positioned

u in JDK, name defines filesystem directory
structure
Fbobs.stuff.MyClass è bobs/stuff/MyClass.class
Fnot an absolute requirement

• e.g. VisualAge for Java has a repository instead

uCLASSPATH environment variable
F location of user-defined components
F location of system components appended

automagically
Fnot made available to appl{ications, ets}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 27

u import
F2 forms

• import package.class;
• import package.*;

F import provided as a convenience only
• could use fully-qualified names everywhere

Fpossible ambiguities resolved by using fully-
qualified names

u java.lang.* always implicitly imported

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 28

n Visibility modifiers
uaccounts for packages as well as classes
uunspecified (“friendly”)

Fvisible throughout its enclosing package
upublic

F (class/interface) visible anywhere the containing
package is; (method) visible anywhere it’s class is

uprivate
Fonly visible within it’s own class

uprotected
Fvisible throughout package and any extensions to

the containing class

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 29

umust only be 1 public class per file
F rest are friendly throughout the package
Fact in a “supporting role”
Fso: need to consider class, file and package

boundaries
n Visibility summary

Member Visibility
Accessible to: Public Protected Package Private
Same class 4 4 4 4
Class in same package 4 4 4 6
Subclass in different package 4 4 6 6
Non-subclass, different package 4 6 6 6

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 30

n Techniques
ugetters/setters

Fsecure but slightly cumbersome

F required technique for JavaBeans

public class Weekday
{
private int weekday; // restricted to MONDAY .. SUNDAY
public static final int MONDAY = 0,

TUESDAY = MONDAY + 1,
…
SUNDAY = SATURDAY + 1;

public void setWeekday (int weekday) throws Exception
{
if ((weekday < MONDAY) || (weekday > SUNDAY))

throw new Exception (“Day of week out of range.”);
this.weekday = weekday;
}

public int getWeekday ()
{
return (weekday);
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 31

n Abstract classes
ua description of what is needed

Fprovides a ‘shape’ to guide construction within the
inheritance hierarchy

u “fill in the blanks”
Fany class with an abstract method must be

declared as such
Fcannot be instantiated
Fa subclass becomes concrete only if it overrides all

abstract methods
F if a subclass leaves abstract methods, it is itself

abstract

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 32

abstract class Shape implements Drawable
{
public abstract double area (),

circ ();
public abstract void draw ();
}

class Circle extends Shape
{
int radius;
public Circle (int radius) { this.radius = radius; }
public double area () { return 2 * Math.PI * radius; }
public double circ () { … }
public void draw () { … }
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 33

n Interfaces
ucollection of method definitions and constants

Fevery field in an interface is implicitly public, static
and final

Fevery method is implicitly public
uuseful for capturing similarities without an

inheritance relationship:
FDrawableCircle = Circle + [Drawable I/F]
FDrawablePerson = Person + [Drawable I/F]
Fobviously, Circle & Person are not related via

inheritance

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 34

// Drawable.java
public interface Drawable

{
double DEFAULT_X = 0.0,

DEFAULT_Y = DEFAULT_X;
void setColor (Color c);
void setPosition (double x, double y);
void draw (DrawWindow dw);
}

// DrawableCircle.java
public class DrawableCircle extends Circle implements Drawable

{
Color theColor;
…
// this method (partially) fulfils the Drawable ‘promise’
public void setColor (Color c)
{
theColor = c;
}

// DrawablePerson.java
public class DrawablePerson extends Person implements Drawable

{
Color theColor;
…
// this method (partially) fulfils the Drawable ‘promise’
public void setColor (Color c)
{
theColor = c;
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 35

uconsider a FilledCircleButton
Fcan’t inherit from both FilledCircle and Button…

Fso: also useful for enhancing single inheritance
chain

active: responds to user interaction+ry

x

circ {} area {}

col

draw {}

interface: a promise
that the class will
implement certain
methods

interfaces allow an
object to fit in where
required

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 36

u interface defines a new type: use accordingly
“A variable whose declared type is an interface
type may have as its value a reference to any
object that is an instance of a class declared to
implement the specified interface. It is not
sufficient that the class happen to implement all
the abstract methods of the interface; the class or
one of its superclasses must actually be declared
to implement the interface…”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 37

Fa class can implement > 1 interface
Fan interface can extend 1+ interfaces

u interface defines a ‘protocol’ for using the
implementation
Fe.g. callbacks

public interface Transformable extends Scalable, Rotatable, Reflectable { }
public interface DrawingObject extends Drawable, Transformable { }

public class Shape implements DrawingObject { }
Or...
public class Shape implements Drawable, Transformable { }

interface
inheritance

implementation
inheritance

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 38

// ClockCanvas.java
class ClockCanvas extends Canvas
implements Timed
{
public ClockCanvas (int interval)
{
new Thread (new Timer (this, interval)).start ();
}

public void tick ()
{ /* do something */ }

}

// Timer.java
class Timer implements Runnable
{
private int interval = 0;
privaate Timed target;
public Timer (Timed target, int interval)
{
this.target = target;
this.interval = interval;
Thread.currentThread ().setDaemon (true);
}

public void run ()
{
for (; ;)
{
try

{
Thread.sleep (interval);
}

catch (InterruptedException ie)
{
ie.printStackTrace (System.err);
}

target.tick ();
}

}
}

// Timed.java
interface Timed
{
public void tick ();
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 39

u Interfaces facility ≈ multiple inheritance?
FM.I. a Bad Thing

• complex compiler & ghastly disambiguating rules

F interfaces???
• simpler: no code inherited, just definitions
• more cumbersome?

active: responds to user interaction+ry

x

circ {} area {}

col

draw {}

m
ul

tip
le

 in
te

rf
ac

es

single inheritance

interface
inheritance

implementation
inheritance

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

OOP With Java

Sunday, July 05, 2009 40

u lesson from “swing” classes:
Fabstract classes allow for changes in a class

definition
• use if a system is still felt to be immature and still subject

to change
• changes in abstract class permeates all subclasses

without effort

F interface fixes changes for all time
• appropriate to ‘fix’ a mature class hierarchy
• would be troublesome to re-define all classes affected

by change in interface definition

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

