OOP With Java

Class == abstraction
¢ concept, real-world ‘thing’, etc.
¢ also a packaging mechanism

Object == concrete instance of a class

circ{}\ area {} circ{} area({}

OOP With Java

= Class Circle
a class is an encapsulation of data & methods

public class Circle extends Shape

{
public double x,

Y,
r;

public double circ ()

{
return (2 * (Math.PI * r));

}

public double area ()

{
return (Math.PI * (r * r));

}

}
¢ An object is an instance of a class

- created by applying the new operator to the
class’ constructor

{ / constructor
Circle ¢ = new Circle ();
c.x =c.y = 50.0; c.r = 2.4;
double theArea = c.area ()

Sunday, July 05, 2009 N\ method call

OOP With Java

= Constructors
¢ have the same name as the class
& no return type specified; type implied
¢ can be > 1 for different situations:

public class Circle extends Shape

{

public Circle ()

{ // create a default circle _
this (0.0, 0.0, 1.0); calls this constructor

}

public Circle (double x, double y, double r)
{..}; // create with given properties

}

‘this’ is a reference to the enclosing instance
Sunday, July 05, 2009

OOP With Java

¢ statement that invokes ‘this’ must be the first in a
constructor

& objects will get a default constructor
~if not explicitly provided
~numeric fields -> 0; references -> null
= No destructors

¢ Object finalization dealt with differently
+ less satisfactorily?

Sunday, July 05, 2009

OOP With Java

= Object destruction
¢ no destructors as in C++

¢ Java uses garbage collection
- objects are reference counted

-~ automatic reclamation

- mark large objects (e.g. big arrays no longer
needed) for early reclamation by setting reference

to null

public static void main (String [] args)

{
double [] array = new double [100000];

doSomethingWith (array):;
array = null;

—can invoke System.gc () directly

Sunday, July 05, 2009

OOP With Java

»« GC calls a finalizer

protected void finalize () throws IOException

{
if (filedescr '= null)
close ()

super.finalize ()

}
¢ invoked just before space is taken back

¢ NO guarantees

-~ GC may never be invoked; no specified order, etc.
¢ finalizer may ‘resurrect’ an object

= by saving the this reference somewhere ‘safe’

- BAD style!
¢ exceptions are ignored by runtime

Sunday, July 05, 2009

OOP With Java

« Method overloading
¢ methods with same name

«int f (int);

- double f (double) } Prerionsed
¢ based on a method’s signature

- [name, parameters (#, type)]

— _/
v

note: return type not considered
¢ saw this before: constructors

public void print (int 1);
public void print (long I);
public void print (char [] s);
public void print (String s);
public void print (boolean b);

Sunday, July 05, 2009

OOP With Java

« Primitive types passed by value only (ie Copies)
& references are primitive types!

¢ swap (X, X) not possible
+ solution: pass elements via reference to array

public class CanSwap

{
private static final int APOS = 0, BPOS = 1;

private static void swap (final int [] a)
{ int t = a [APOS]; a [APOS] = a [BPOS]; a [BPOS] = t; }

public static void main (final String [] args)
{
int theInt0 = 0, theIntl = 1;
// f£lashback to BASIC!!!
int [] intArray = {theIntO, theIntl};
swap (intArray) ;
theInt0 = intArray [APOS]; theIntl = intArray [BPOS];
}
}

Sunday, July 05, 2009

OOP With Java

» Class/instance distinctions

¢ instance methods/data
=1 copy / object
& class methods/data
- Introduced by ‘static’ keyword
~ 1 copy shared between all instances

- methods have no ‘this’ reference
e can only act on parameters and class data

- closest Java gets to globals
* but no possibility of name ‘clashes’

Sunday, July 05, 2009

OOP With Java

class cannot
be extended

public final class MyMath
{

class methods/data

object

instance methods/data

allocated once only

public static final int PI = 3;

public static double square (final double n)

{
return (n * n);
}

}

{

class name, not instance name

double d = MyMath.square (MyMath.PI) ;

Sunday, July 05, 2009

10

OOP With Java

« Static initialisers

¢ [multiple] unnamed arbitrary code blocks

-~ multiple instances amalgamated according to
source-code order

& run once when class is first loaded

public final class MyMath

{
static private double [] sines = new double [1000];

// set up sine lookup table for speed
static
{
double x = 0.0,
dx = (Math.PI / 2) / (1000 - 1);

for (int i = 0; i < 1000; i ++)
{ sines [i] = Math.sin (x); x += dx; }
}
}

Sunday, July 05, 2009 11

OOP With Java

« Inheritance
¢ main impetus: enhance code reuse and quality

public class FilledCircle extends Circle

{
;
¢ everything extends Object
- even if nothing explicitly stated

- default methods
* clone

equals

toString

getClass

etc.

Sunday, July 05, 2009

12

OOP With Java

¢ models an [S-A relationship

- a circle IS-A shape, which [S-A object
 a circle HAS-A x coordinate (which I1S-A float)

¢ allows complex structures to be built up through

diffs’

/

this

Sunday, July 05, 2009

only need to program this portion

FilledCircle 1S-A Circle

\

super

OOP With Java

public class FilledCircle extends Circle

{

private Color col;

public FilledCircle (float x, float y, float r, Color col)

{
sSuper (x, Y, r);
this.col = col;

}

public void draw (Graphics g)
{

super.draw (qg);
// do the special FilledCircle ‘magic’

.
ces J

}

Sunday, July 05, 2009

14

OOP With Java

« The ‘super’ keyword

¢ refers to immediate ‘ancestor’: “super.name is
treated exactly as if it had been the expression
((S)this).name; thus, it refers to the field named
name of the current object, but with the current
object viewed as an instance of the superclass.”

& super.super.x illegal
+—use ((SomeSuperClass) this).x explicitly

FilledCircle

draw (g):
super.draw (g);
Dval (...);

Circle

draw (g):
g.drawOval (..,);

Sunday, July 05, 2009 15

OOP With Java

class TO
;ublic int £ () { return (0); }
cl;ss Tl extends TO
éublic int £ ()
;ystem.out.println ("\t" + super.f ());

1}:eturn (1) ; >java Super

} 0
class T2 extends T1 1
{ 2
public int £ ()
{
System.out.println ("\t\t" + super.f ());
return (2);
}
}

public class Super

{
public static void main (String [] args)

{
System.out.println (new T2 ().£f ());

}
}

Sunday, July 05, 2009

16

OOP With Java

» Constructor chaining

new FilledCircle

LN N TN

C(Object) (Shape > (Circle) I‘{illedCircI

DU

fully instantiated
FilledCircle

¢ Java doesn’t do automatic finalize chaining
= should call super.finalize () explicitly at end
« Final classes

¢ may not be extended

~ (also final methods)
Sunday, July 05, 2009 17

OOP With Java

public class Chain extends Super
{
public Chain ()
{
System.out.println ("Making a Chain...");

}

public static void main (String [] args)
{
new Chain ()
}

}

class Super extends SuperSuper
{
public Super ()
{
System.out.println ("Making a Super...");
}
}

class SuperSuper

{
public SuperSuper ()

{

System.out.println ("Making a SuperSuper...");

}
}

Sunday, July 05, 2009

C:\Chain>java Chain

Making a SuperSuper...

Making a Super...
Making a Chain...

C:\Chain>

18

OOP With Java

» Overriding
¢ method with same signature as in superclass
¢ overriding != overloading

¢ allows “Dynamic Dispatching” / “Late Binding”
-~ Square, Circle extends Shape

- call to myShapeVariable.area ()

» whether circle or square’s area called depends on
dynamic type referenced by myShapeVariable

— all Java methods ~ C++’s virtual by default
— (possibly) except if final
- can't cast behaviour away

» don’t want programmer to be able to force call to
square’s area instead of circle’s

Sunday, July 05, 2009 19

OOP With Java

= Polymorphism/upcasting
+ taking an object reference and treating it as a
reference to a less specialised type in the

Inheritance tree
& useful for “generic” structures

import java.util.*;
public class Poly
{

public static void main (String [] args)
{

Vector v = new Vector ()
v.addElement (new Circle (2));
v.addElement (new Square (2));
Enumeration e = v.elements ()

while (e.hasMoreElements ())

{
Shape s = (Shape) e.nextElement () ;

if (s.area () > 2)
s.draw ()

}
}
}

Sunday, July 05, 2009

20

OOP With Java

interface Drawable { public void draw (); }

abstract class Shape implements Drawable

{

public abstract double area (),

circ ()

public abstract wvoid draw ()

}

class Circle extends Shape

{

int radius;

public Circle (int radius) { this.radius = radius; }

public double circ ()
public double area ()
public void draw () {

}

{ return (2 * Math.PI * radius); }
{ return (Math.PI * Math.pow (radius, 2)); }

}

class Square extends Shape

{
int lengthOfSide;

public Square (int lengthOfSide) { this.lengthOfSide =

public double area ()
public double circ ()
public void draw () {

}

Sunday, July 05, 2009

= lengthOfSide;
{ return (lengthOfSide * lengthOfSide); }

{ ..}
-}

}

21

OOP With Java

» Run-time type info.

the class java.lang.Class
- one instance for each loaded class

created by runtime system

- describes a class

forName (String) returns info for a name
isInterface

getName

getSuperclass

newlnstance

etc.

Sunday, July 05, 2009

22

OOP With Java

¢ reflecting upon ‘this’ allows an object to find out
it's name...

import java.io.*;

public class SimpleReflectionTest
{
public SimpleReflectionTest ()
{
System.out.println (this.getClass () .getName ());
}

// recall that main is a member of the class,
// not an instance, so make an instance of
// SimpleReflectionTest to reflect upon
public static void main (String [] args)

{

new SimpleReflectionTest() ;

}

Sunday, July 05, 2009

23

OOP With Java

= Encapsulation
+ controlling visibility
« packages
« visibility modifiers
+technique: getters & setters

& key: don'’t give away info. unless you absolutely
have to

Sunday, July 05, 2009

24

OOP With Java

« Packages

¢ namespace of related (cooperating?) classes
- Java.awt.Frame; java.awt.event.ActionEvent
= not hierarchical, contrary to appearance
+ au.edu.dstc.bobs.stuff.MyClass.doSomething ()

— U\)\
g Y Y

package class field

¢ package au.edu.dstc.bobs.stuff;
= first thing in file
¢ proposed naming convention:
-~ bob@mach.net.dom -> dom.net.package.class....

- should get unique package names this way
Sunday, July 05, 2009 25

mailto:bob@mach.net.dom

OOP With Java

¢ 1 a default, unnamed package
= classes belong to this unless otherwise positioned
¢ in JDK, name defines filesystem directory
structure
- bobs.stuff. MyClass =» bobs/stuff/MyClass.class

~not an absolute requirement
» e.g. VisualAge for Java has a repository instead

¢ CLASSPATH environment variable
+location of user-defined components

+location of system components appended
automagically

- not made available to appl{ications, ets}

Sunday, July 05, 2009 26

OOP With Java

¢ import

+ 2 forms
« import package.class;
« import package.™

= Import provided as a convenience only
 could use fully-qualified names everywhere

+ possible ambiguities resolved by using fully-

qualified names

¢ java.lang.” always implicitly imported

Sunday, July 05, 2009 27

OOP With Java

= Visibility modifiers
¢ accounts for packages as well as classes
& unspecified (“friendly”)
- visible throughout its enclosing package
¢ public

+ (class/interface) visible anywhere the containing
package is; (method) visible anywhere it's class is

¢ private
= only visible within it's own class
¢ protected

= visible throughout package and any extensions to
the containing class
Sunday, July 05, 2009 28

OOP With Java

¢ must only be 1 public class per file

rest are friendly throughout the package
act in a “supporting role”

so: need to consider class, file and package
boundaries

Visibility summary

Member Visibility

Accessible to: Public Protected Package Private
Same class

o
Class in same package g
Subclass in different package g
Non-subclass, different package g

0 [y oy oy
©0 ©4 [T [T
00 ©0 ©4 [

OOP With Java

= Techniques

& getters/setters
= secure but slightly cumbersome

public class Weekday
{
private int weekday; // restricted to MONDAY .. SUNDAY
public static final int MONDAY = O,
TUESDAY = MONDAY + 1,

SUNDAY = SATURDAY + 1;
public void setWeekday (int weekday) throws Exception

{
if ((weekday < MONDAY) || (weekday > SUNDAY))

throw new Exception (“Day of week out of range.”);
this.weekday = weekday;

}
public int getWeekday ()

{

return (weekday) ;
}
}

= required technique for JavaBeans
Sunday, July 05, 2009 30

OOP With Java

» Abstract classes

¢ a description of what is needed

~ provides a ‘'shape’ to guide construction within the
inheritance hierarchy

¢ “fill in the blanks”

- any class with an abstract method must be
declared as such

- cannot be instantiated

+a subclass becomes concrete only if it overrides all
abstract methods

- If a subclass leaves abstract methods, it is itself
abstract

Sunday, July 05, 2009 31

OOP With Java

abstract class Shape implements Drawable

{

public abstract double area (),
circ ()

public abstract wvoid draw ()

}

class Circle extends Shape

{

int radius;
public Circle (int radius) { this.radius = radius; }

public double area () { return 2 * Math.PI * radius;
public double circ () { .. }
public void draw () { .. }

}

Sunday, July 05, 2009

}

32

OOP With Java

« Interfaces

¢ collection of method definitions and constants

- every field in an interface is implicitly public, static
and final

- every method is implicitly public
¢ useful for capturing similarities without an
Inheritance relationship:
- DrawableCircle = Circle + [Drawable |/F]
- DrawablePerson = Person + [Drawable |/F]

- obviously, Circle & Person are not related via
Inheritance

Sunday, July 05, 2009 33

OOP With Java

// Drawable. java
public interface Drawable

{
double DEFAULT X = 0.0,

DEFAULT Y = DEFAULT X;

void setColor (Color c);
void setPosition (double x, double y);

void draw (DrawWindow dw) ;

}

// DrawableCircle. java
public class DrawableCircle extends Circle implements Drawable

{
Color theColor;
7/ this method (partially) fulfils the Drawable ‘promise’
public void setColor (Color c)
{

theColor = c;

}

// DrawablePerson. java
public class DrawablePerson extends Person implements Drawable

{
Color theColor;
7/ this method (partially) fulfils the Drawable ‘promise’
public void setColor (Color c)
{

theColor = c;
}
Sunday, July 05, 2009 34

OOP With Java

¢ consider a FilledCircleButton
- can’t inherit from both FilledCircle and Button...

+ active: responds to user interaction

T~

interface: a promise
that the class will
implement certain
methods

interfaces allow an
object to fit in where
required

+ s0: also useful for enhancing single inheritance

chain
Sunday, July 05, 2009

OOP With Java

¢ interface defines a new type: use accordingly

“A variable whose declared type is an interface
type may have as its value a reference to any
object that is an instance of a class declared to
implement the specified interface. It is not
Sufficient that the class happen to implement all
the abstract methods of the interface; the class or
one of its superclasses must actually be declared
to implement the interface...”

Sunday, July 05, 2009 36

OOP With Java

- a class can implement > 1 interface
-~ an interface can extend 1+ interfaces

public interface Transformable extends Scalable, Rotatable, Reflectable { }
public interface DrawingObject extends Drawable, Transformable { }

public class Shape implements DrawingObject { }
Or. ..

public class Shape implements Drawable, Transformable { }

¢ interface defines a ‘protocol’ for using the
Implementation

- e.g. callbacks

interface
inheritance

implementation
inheritance

Sunday, July 05, 2009 37

OOP With Java

// ClockCanvas. java
class ClockCanvas extends Canvas

implements Timed

// Timer. java
class Timer implements Runnable

{

private int interval = 0O;

privaate Timed target;

public Timer (Timed target, int interval)
{
this.target = target;

this.interval = interval;
Thread.currentThread () .setDaemon (true);

}
public void run ()
{
for (; ;)
{
try
{

Thread.sleep (interval);

}

catch (InterruptedException ie)

{

ie.printStackTrace (System.err);
}
target.tick ();
}
}
}

Sunday, July 05, 2009

new Thread (new Timer (this,

public ClockCanvas (int interval)

public void tick ()
{ /* do something */ }

// Timed.java
interface Timed

{
public void tick ();

}

interval)) .start ();

38

OOP With Java

¢ Interfaces facility ~ multiple inheritance?
= M.l. a Bad Thing

« complex compiler & ghastly disambiguating rules
~interfaces???

« simpler: no code inherited, just definitions

* more cumbersome?

aﬂd\
yoca\ com™
nds 10
e resPO
s A
e% + active: responds to user interaction >
* a"O’/’b
/e-
a » »
NS Whe

single inheritance n /

Sunday, July 05, 2009

multiple interfaces

39

OOP With Java

& lesson from “swing” classes:

- abstract classes allow for changes in a class
definition
 use if a system is still felt to be immature and still subject
to change
» changes in abstract class permeates all subclasses
without effort
+ interface fixes changes for all time
« appropriate to fix’ a mature class hierarchy

e would be troublesome to re-define all classes affected
by change in interface definition

Sunday, July 05, 2009 40

