Native Code

Native Code

=« Two aspects:

¢ Java Native Interface (JNI)

-~ handle those situations wheﬁ
cannot be written entlre iR, o »--w
* Interfacing Java to nativ: -“- s *_;

« Warning! Warning! Will R
leads to loss of portablllt; and th:
100% pure Java bandw Ry

¢ Java Invocation API

- can load the Java VM in o';éﬁ-arp'
appllcatlon without havigleRte Iml{

source code it
¢ see if you can use a JIT before resorting to
native code...

Sunday, July 05, 2009 2

Native Code

« Java Native Interface (JNI)
¢ may:
- need to access platform-dependent features
+ need to interface with legacy code

- have time/resource constraints that Java can’t
handle

¢ important to have a standard interface:

- ensures that same native library can work with all
JVMs on a given platform

Java classes Native Code

~ Microsoft: “Standard? Ho Ho Ho! You need RNI”

Sunday, July 05, 2009

Native Code

¢ ‘native’ Java keyword
= says “get this from outside the Java environment”

// provides access to UNIX system calls
class UNIXSysCalls

{
public native static int chmod (String path, int mode) ;

.. (others)
}
= native code used in the normal fashion:

result = UNIXSysCalls.chmod (“/home/bob/SecretStuff”, 0600) ;

~ implementation in C++:
#include <jni.h>
extern “"C” Jjint Java_ UNIXSysCalls chmod
(INIEnv *env, jclass c, jstring path, jint mode)

{
char *cpath = env -> GetStringUTFChars (path);

jint result = chmod (cpath, mode) ;
env -> ReleaseStringUTFChars (path, cpath);
return (result);

}
Sunday, July 05, 2009

Native Code

¢ some salient points:

= name mangling:
 the prefix Java
« a (mangled fully-qualified) class name
« an underscore (" ") separator
« a mangled method name

= JNIEnv is always the first argument
* points to lookup table of JNI functions

— GetStringUTFChars, etc..

* table layout is COM-compliant: “This means that, as
soon as cross-platform support for COM is available, the
JNI can become a COM interface to the Java VM.”

-~ second argument:
« for a nonstatic native method: a reference to the object
« for a static native method: a reference to its Java class

Sunday, July 05, 2009 5

Native Code

¢ simple development process:
+ write Java class with native method definitions
» compile to produce a class file

» create C/C++ signatures
* javah -jni filename
« write C/C++ code corresponding to the generated
signatures in the header file

« create a shared library from the C/C++ code
¢ use:

-~ same as any other Java application
-~ need to have shared library in CLASSPATH

Sunday, July 05, 2009

Native Code

¢ some security ramifications:

- applets can’t use native methods
 ‘cos they can’t access DLLs
oFe

N E - a wayward bit of native code can bring the whole
ﬁ shooting match crashing down
« “native methods are a significant security risk for Java
programs. The C runtime system has no protection
against array bounds errors, indirection through bad
pointers, and so on. It is particularly important that
programmers of native methods handle all error
conditions to preserve the integrity of the Java system.”
= JNI allows native methods to raise arbitrary Java
exceptions...native code may also handle
outstanding Java exceptions

Sunday, July 05, 2009

Native Code

= Java Invocation API
¢ JDK 1.1’s JVM is a DLL or shared library
- not on all platforms, ‘though

¢ allows a C/C++ application to create a JVM
within itself

- remember TCL?

Sunday, July 05, 2009

Native Code

#include <jni.h>

JavaVvM *-jvm; // denotes a Java VM
JNIEnv *env; // pointer to native method interface
JDK1 1InitArgs vm args; // JDK 1.1 VM initialization arguments

// Get the default initialization arguments and set the class path
JNI_ GetDefaultJavaVMInitArgs (&vm_args);
vm_args.classpath = ...;

// load and initialize a Java VM, return a JNI interface pointer in env
JNI CreateJavaVM (&jvm, &env, &vm_args);

// invoke the Main.test method using the JNI
jclass cls = env -> FindClass ("Main") ;

jmethodID mid = env -> GetStaticMethodID (cls, "test", "(I)V");

env -> CallStaticVoidMethod (cls, mid, 100); __

jvm -> DestroyJavaVM () ; rr_langled
signature

Sunday, July 05, 2009

Native Code

¢ signatures

= to call an arbitrary Java method, you need to learn
the rules for ‘mangling’ the names of method
signatures

- representation of method’s name & parameters

» “there’s no rational reason why programmers are forced
to use this mangling scheme...using the mangled
signatures lets you partake in the mystique of
programming close to the virtual machine.”

Sunday, July 05, 2009 10

Native Code

¢ method parameters and return type
~long f (float i, String [] s) ==
“(F[Ljava/lang/String;)J;

O\

return type

array parameter types

-£Z,V,B,C,D, S, F, | J, Lclassname;
- [indicates array

¢ so, ‘(I)V’ ==
= void test (int x)

Sunday, July 05, 2009

11

