
RMI

Sunday, July 05, 2009 1

n Remote Method Invocation
u “…the action of invoking a method of a remote

interface on a remote object.”
Fmaintains type safety, security, etc.

ugreater degree of abstraction than sockets
F lots of the work done for you

• parameter/return marshalling
• name lookups

Fstill lots of housekeeping to do

stub
skeleton

client

server(un)marshalling
parameters/returns

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 2

ugoals:
Fsupport seamless remote invocation on objects in

different virtual machines
Fsupport callbacks from servers to applets
F integrate the distributed object model into Java

while retaining most of the language's semantics
Fmake differences between the distributed object

model and local Java object model apparent,
while preserving the safety features of the Java
language and runtime environment

Fmake distributed systems as simple as possible to
program

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 3

uRMI obviates the need to develop fiddly
Application Layer protocols that don’t have any
direct relevance to a project

umain aspects to examine:
Fclient side
Fserver side

ualso:
F registry/naming
Fstubs and skeletons
Fsecurity

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 4

n Client side
u “…whole point of RMI is to make the use of

remote objects very simple…only extra thing
needed is to obtain a reference to the remote
interface”

u java.rmi.RemoteException Class
Fmakes it possible to distinguish local exceptions,

& exceptions specific to the method, from
exceptions thrown by the underlying mechanisms

Fcan be constructed with a nested exception (a
Throwable): the underlying exception that
occurred during an RMI call

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 5

uThe Naming Class
Fallows remote objects to be retrieved and defined

via URLs
• rmi://java.sun.com:2001/root

Fmethods (from java.rmi.registry.Registry interface)
• bind, rebind
• unbind
• lookup
• list

F registry supports bind, unbind, and rebind only on
the same host as the originating server; a lookup
can be done from any host

F JDK supplies rmiregistry
• simple registry server

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 6

import java.rmi.*;
import java.rmi.registry.*;

public class DisplayTime
{
public static void main (String [] args)
{
System.setSecurityManager (new RMISecurityManager ());
try
{
TimeSvcI t = (TimeSvcI) Naming.lookup ("//machine.name:2005/TimeSvc");
System.out.println (”The time = " + t.getTime());
}

catch(Exception e)
{
e.printStackTrace();
}

}
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 7

n Server side
u java.rmi.Remote Interface

public interface Remote { }

Fmarker interface: all remote objects must directly
or indirectly implement this

u java.rmi.server.UnicastRemoteObject
Fprovides support for point-to-point active object

references using TCP-based streams
Fserver must extend this and implement the

java.rmi.Remote interface
u java.rmi.server.Unreferenced interface

F lets server know when no clients reference it

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 8

import java.rmi.*;

interface TimeSvcI extends Remote
{
long getTime() throws RemoteException;
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 9

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

public class TimeSvc extends UnicastRemoteObject implements TimeSvcI
{
public long getTime() throws RemoteException
{ return (System.currentTimeMillis ()); }

// must implement constructor to throw RemoteException
public TimeSvc () throws RemoteException
{ /* super () Called automatically */ }

public static void main (String [] args)
{
System.setSecurityManager (new RMISecurityManager ());
try
{
TimeSvc t = new TimeSvc ();
Naming.bind ("//machine.name:2005/TimeSvc", t);
System.out.println ("TimeSvc running...");
}

catch (Exception e)
{ e.printStackTrace (); }

}
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 10

n Stub
ustub == client-side proxy
u implements all the interfaces that are supported

by the remote object. Responsible for:
F initiating a call to the remote object
Fmarshalling arguments to a stream (obtained from

the remote reference layer)
F informing the remote reference layer that the call

should be invoked
Funmarshalling the return value or exception
F informing the remote reference layer that the call

is complete

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 11

n Skeleton
userver-side entity which dispatches calls to the

actual remote object implementation.
Responsible for:
Funmarshalling arguments from the marshal stream
Fmaking the up-call to the actual remote object

implementation
Fmarshalling the return value of the call or an

exception (if one occurred) onto the marshal
stream

n args/return types must implement the
Serializable interface

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 12

n Stubs & skeletons
u loaded dynamically “behind the scenes”

Fmust be accessible to ‘real’ code (ie on
CLASSPATH or downloaded from server)

ugenerated using the rmic compiler
F “The compiler is invoked with the package

qualified class name of the remote object class.
The class must previously have been compiled
successfully.”

• rmic TimeSvc (since no package in this case…)

Fcreates:
• TimeSvc_Stub.class
• TimeSvc_Skel.class

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 13

n RMISecurityManager
usimple security manager disables all functions

except class definition and access…a
downloaded class is allowed to make a
connection if the connection was initiated via the
RMI transport mechanism

u if no security manager set, stub loading is
disabled...ensures that some security manager
must be supplied

uapplets: “…does not apply to applets, which run
under the protection of their browser's security
manager.”

ucallbacks: “If an applet creates and passes a
remote object to the server, the server can use
RMI to make a callback to the remote object.”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 14

n Remote Activation
uobviates the need to have a server running

continuously, even when unused
uRMI catches up with CORBA
unew rmid activation daemon
u java.rmi.activate package

FActivable
• analogous to UnicastRemoteObject for activable servers

FActivationDesc
• provides all the info. that rmid needs to create a new

instance of the implementation class
FMarshalledObject

• “provides a flexible mechanism for passing persistence
or initialization data…into the implementation’s class file”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 15

uneed to create additional starter application:
F tells rmid that the server is activable
Fmay initialise parameters/persistent data stores
Festablishes runtime security policy regime for the

server (what files, etc. can be accessed…)
Fadvertises server ‘proper’ with rmiregistry

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 16

0. starter application registers server for later activation

1. starter receives reference to server’s interface

2. starter registers server’s interface

3. client looks up interface

4. gets reference back

5. calls method

6. call causes stub to ‘fault’

7. rmid activates server

8. method call proceeds

9. method returns results (if any)

Client

rmiregistry

rmid

starter
server

2

7 5

4

3

0

1

6

8

9

n Activation Mechanism

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 17

n Development process:
¬ start rmiregistry (only needed once)
 start rmid if servers are activable (" " ")
® compile source files
¯ apply rmic to any class that implements the

Remote interface
° run the server, or run the starter application, as

appropriate
± run the client

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 18

n Object Request Brokers (ORBs)
uRMI is direct object-object, Java-Java
uORBs interpose between the two objects

Fsimilar, but greater flexibility
Fallow mixed languages

• C++, Smalltalk, Ada, Python, etc

F lots more work
• only really worth it for heterogeneous enterprise

solutions

Fmuch (standardisation) activity
• IIOP
• Java ORBs

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

RMI

Sunday, July 05, 2009 19

n The RMI/CORBA political situation & future
uRMI and IIOP statements:

F “Sun will continue to support and evolve the Java
API”

F “You will be able to access CORBA-based objects
through IIOP”

F “… it remains the technology of choice for Java-
based distributed computing.”

F “Support [for the CORBA IDL]…will be included in
the next version of the JDK”

u “…an application in which clients access data
from a large number of sources is particularly
well-suited to CORBA.”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

