
Exceptions & Threads

Sunday, July 05, 2009 1

n Exceptions
“If anything can go wrong, it will.
—Finagle's Law (often incorrectly attributed to Murphy, whose law is
rather different—which only goes to show that Finagle was right)”

ua mechanism for generating “out-of-band”
notifications regarding the occurrence of
exceptional events

check

check
check

exception

handler

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 2

n Exceptions extend java.lang.Throwable
u2 main categories:

FException: programmatic faults, etc.
F2 sub-categories:

• “if it’s a RuntimeException, it’s your fault. Fix your code.”
– ArrayIndexOutOfBoundsException, bad cast, etc.
– don’t need to explicitly declare these; assumed to be

widespread (“unchecked exceptions”)
• others

– read past end of file, malformed URL, etc.

FError: internal defects and resource exhaustions
• not for mere mortals
• not usually explicitly mentioned

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 3

n Methods must state the (non-RuntimeException)
exceptions they throw (define the OOB channel):

n Exception/constructor isn’t anything special:

public int myDivide (int x, int y) throws ArithmeticException
{
if (y == 0)
throw new ArithmeticException ();

else
return (x / y);

}

public int myDivide (int x, int y) throws MyArithmeticException
{
if (y == 0)
throw new MyArithmeticException (“Naughty, naughty!”, 123);

else
return (x / y);

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 4

class MyArithmeticException extends java.lang.ArithmeticException
{
private int errorNo;

public MyArithmeticException (String s, int e)
{
super (s);
errorNo = e;
}

public int getErrno ()
{
return (errorNo);
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 5

n Dealing with exceptions
// declare file, num, denom
try
{
// open file, read num, denom…
int result = myDivide (num, denom);
}

catch (final MyArithmeticException e)
{
stdout.println (e.getMessage () + “ “ + e.getErrno ());
e.printStackTrace ();
throw e; // to enclosing environment
}

catch (final IOException e)
{ …
}

catch (final Exception e)
{ …
}

finally
{
// close file…guaranteed regardless
}

order: specific -> general

Introduced in

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 6

n Exceptions are not a panacea
u intended for rare, exceptional events
uslow: lots of housekeeping involved
udon’t micromanage

Fcatch everything individually
udon’t squelch

Fcatch everything generically
F ignore

n Experience plays a large part in defining
exceptions
ueg. java.io.EOFException

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 7

n Threads
uobjects and parallelism naturally go together

Fobject encapsulates data & processing
specification

Fmay as well encapsulate actual processing …
ugive illusion of doing > 1 thing at a time

Fbetter apparent performance
Fbetter resource utilization
Fneeded for applets over a slow internet!

1 CPU; multiple threads

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 8

n Thread defined by:
u implementing java.lang.Runnable

Fcan be used whether or not a class extends
another

F this is the ‘preferred’ method
uextending java.lang.Thread

Fonly possible if class doesn’t already
extend something

OR

class AnyClass extends Thread
{ … }

class AnyClass extends Applet implements Runnable
{ … }

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 9

public class EZTest
{
public static void main (String [] args)
{
new Thread (new EZThread (), "hickory").start ();
new Thread (new EZThread (), "dickory").start ();
new Thread (new EZThread (), "dock").start ();
}

}

class EZThread implements Runnable
{
public void run () // eventually called by Thread.start ()
{
String threadName = Thread.currentThread ().getName ();

for (int x = 0; x < 3; x ++)
{
System.out.println (x + " " + threadName);
try { Thread.sleep ((int) (Math.random () * 1000)); }
catch (InterruptedException ie) { }
}

System.out.println (threadName + " has expired");
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 10

public class EZTest
{
public static void main (String [] args)
{
new EZThread (“hickory”).start ();
new EZThread (“dickory”).start ();
new EZThread (“dock”).start ();
}

}
class EZThread extends Thread
{
public EZThread (String str)
{ super (str); }

public void run () // called by start ()
{
for (int x = 0; x < 3; x ++)
{
System.out.println (x + “ “ + getName ());
try { sleep ((int) (Math.random () * 500)); }
catch (final InterruptedException ie) {}
}

System.out.println (getName () + “ has expired”);
}

}

D:\Bob\Java\EZThread>java EZTest
0 hickory
0 dickory
0 dock
1 hickory
1 dock
1 dickory
2 hickory
2 dickory
dickory has expired
2 dock
hickory has expired
dock has expired

note random, undefined
ordering

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 11

n 4 possible thread states (lifecycle)
unew
u runnable
unot runnable

Fwaiting, suspended, sleeping, blocked on I/O, etc.
udead

not
runnable new

runnable

dead

stop ()

stop (), or run () exits

stop ()

various
reasons

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 12

n Thread exceptions
u IllegalThreadStateException

Fe.g. resume () on sleeping thread
u InterruptedException
u IllegalMonitorStateException

F try to wait but not in synchronized code
uThreadDeath (extends java.lang.Error)

Fsent to kill a thread
Fcan be caught to allow cleanup but must be re-

thrown
uetc.

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 13

n Some thread methods
usleep
uyield

Faccounts for “green threads” implementations
u isAlive

Fcoarse: can’t distinguish between various states
usetPriority

Fat any given time, the “runnable” thread with the
highest priority will be running

usetDaemon
Fbackground thread
FJava machine will exit if only daemon threads

alive

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 14

n Thread groups
uall threads are members of a group
u∃ default group
uprovides a way of dealing with related threads in

one go
Fset priority bands
Fstart, suspend, etc.
Fapply access privileges
Fetc.

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 15

n Synchronization
u races, deadlocks, etc. highly problematic
uJava provides Hoare monitors

Fevery object has a lock
Fsynchronized methods use lock to ensure only 1

thread active within a monitor instance at any time

Fsynchronizing whole method inefficient

synchronized int myMethod ()
{ … }

int myMethod ()
{
… // pre (or post) non-critical sections
synchronized (anObjectOrThis)
{ … }

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 16

ucan also synchronize to the class
F (actually, to the associated java.lang.Class

object…)
Fstatic synchronized method ()

• serialize shared access to static data

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 17

n Synchronized not enough
u just provides mutual exclusion to a critical section
ualso need to account for changing conditions

Fwait
• (releases lock; waits; recovers lock; continues…)

Fnotify, notifyAll

waiting on
synchronizationwaiting on

condition

Object

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 18

class Monitor extends SimpleBoundedBuffer
{
public synchronized void put (int x) throws InterruptedException
{
while (numberContained == MAX) wait ();

add_it (x);

if (numberContained++ == 0) notifyAll ();
}

public synchronized int get () throws InterruptedException
{
while (numberContained == 0) wait ();

int it = remove_it ();

if (numberContained-- == MAX) notifyAll ();

return (it);
}

…

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

Exceptions & Threads

Sunday, July 05, 2009 19

n Notify versus notifyAll
u1 vs. all
uconsider notify an optimised form of notifyAll

Fe.g. notify is not fair: doesn’t account for priority or
length of time a thread has been waiting

1

2

resource
availability 1

barrier
1

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

