
The Stream Zoo

Sunday, July 05, 2009 1

n Conduits for sending and receiving data
u regardless of characteristics

F file
Fnetwork
Fmemory
Fanother process
Fetc.

uall encapsulated in the same way
F…as far as possible
F regularity makes life easier for us poor

developers!

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 2

n java.io package
umany classes

Fnote use of abstract classes to impose order

n Reader/Writer and Input/OuputStream split
uReader/Writer for textual data
u Input/OutputStream for binary data

BufferedReader

StringReader

PushbackReader

FilterReader

CharArrayReader

PipedReader

Reader

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 3

n System.{err, out} are instances of PrintStream
u textual representation of byte stream

F “All characters printed by a PrintStream are converted into bytes using the platform's
default character encoding. The PrintWriter class should be used in situations that
require writing characters rather than bytes.”

Fprint (primitive type)
Fprintln (primitive type)

u “PrintStream has been superceded in Java 1.1 with
PrintWriter. The constructors of this class have been
deprecated but the class itself has not, because it is
still used by the System.out and System.err standard
output streams.”

n Standard streams
uSystem.{out, err, in}

java console

stream application applet
out 4
err 4
in 4 4

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 4

FileWriter fw = new FileWriter (“test.dat”);
GrepWriter gw = new GrepWriter (fw, “E”);
VowelWriter vw = new VowelWriter (gw);
UppercaseWriter uw = new UppercaseWriter (vw);
uw.write (“…”);

fw

gw

vw

uw

uw.write (“…”);

n “Mix and match” often necessary
u “The use of layered objects to dynamically and

transparently add responsibilities to individual
objects is referred to as the decorator pattern.”

ue.g. print from a memory stream (String)

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 5

import java.io.*;

public class UppercaseWriter extends FilterWriter
{
public UppercaseWriter (Writer w) { super (w); }

public void write (int b) throws IOException
{ out.write ((int) Character.toUpperCase ((char) b)); }

public void write (char [] b) throws IOException
{
for (int i = 0; i < b.length; i ++)

write (b [i]);
}

public void write (char [] b, int off, int len) throws IOException
{
for (int i = 0; i < len; i ++)

write (b [i + off]);
}

public void write (String s, int off, int len) throws IOException
{
char [] cbuf = new char [len];
s.getChars (off, len, cbuf, 0);
write (cbuf);
}

public void write (String s) throws IOException
{ write (s, 0, s.length ()); }

public static void main (String [] args) throws IOException
{
UppercaseWriter uw = new UppercaseWriter (new PrintWriter (System.out));

uw.write ("hello world"); uw.flush ();
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 6

n File
udoesn’t refer to an actual file...
u represents either name of file or the set of files

within a directory
upathSeparator attribute
ucreate, rename, delete, etc.
u length, modified, isFile, etc.
uURL style pathnames usually used:

F /C|/Bob/stuff/other%20stuff/thing
• the only “100% pure” way of doing things

Fcan accept platform specific versions as well:
• Portitia HD:Bob:Java:Stuff
• C:\Bob\Java\Stuff

File

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 7

import java.io.*;

public class DirList
{
public static void main (String args [])

{
File path = new File (".");
String [] list =

(args.length == 0) ? path.list () : path.list (new DirFilter (args [0]));
for(int i = 0; i < list.length; i ++)

System.out.println (list [i]);
}

}

class DirFilter implements FilenameFilter
{
private String afn;

public DirFilter (String afn)
{ this.afn = afn; }

public boolean accept (File dir, String name)
{
String f = new File (name).getName ();
return (f.indexOf (afn) != -1);
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 8

n {Input, Output}Stream
ubase abstract ‘pattern’ classes

n {File, Data}{Input, Output}Stream
uFile*

Fbyte stream only—no structuring
F “structure is in the eye of the beholder”

uData*
Funderstands primitive data structures

• {read, write}Char, {read, write}Double, etc.
• {read, write}UTF for strings

– UTF-8 variable-width encoding for transmission
Fbig-endian format defined for types

• a-la SPARC (surprise!)

StreamFile Input
Output

StreamData Input
Output

StreamInput
Output

sophistication

&

type ‘awareness’

efficiency

abstract

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 9

import java.io.*;

// copy a stream of character-based data from one file to another
// usage: java TextFileCopy input output
public class TextFileCopy

{
private static final int BUFSIZE = 1024; // gratuitous optimization

public static void main (String [] args)
{
BufferedReader r = null;
BufferedWriter w = null;
try

{
r = new BufferedReader (new FileReader (args [0]), BUFSIZE);
w = new BufferedWriter (new FileWriter (args [1]), BUFSIZE);
char [] buffer = new char [BUFSIZE];
for (; ;)

{
int bytes_read = r.read (buffer);
if (bytes_read == -1)

break;
w.write (buffer, 0, bytes_read);
}

}
catch (IOException e)

{
e.printStackTrace (System.err);
}

finally
{
try { r.close (); } catch (Exception e) { e.printStackTrace (System.err); }
try { w.close (); } catch (Exception e) { e.printStackTrace (System.err); }
}

}
}

while ((bytes_read = r.read (buffer)) != -1)
w.write (buffer, 0, bytes_read);

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 10

n RandomAccessFile
uno ‘append’ mode for streams; use this instead:

n StreamTokenizer (java.io)
ubreak a stream into component tokens

Fgood for tokenising Java source
uc.f. StringTokenizer (java.util)

n ByteArrayInputStream
u read from an array of bytes

n Pipe Streams for communication between
threads

StringTokeniser st = new StringTokeniser (str, “ \t\n\r”);

RandomAccessFile st = new RandomAccessFile (“myfile”, “rw”);
st.seek (st.length ());

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 11

n (applications) communication between
processes
unote: loss of portability

import java.io.*;

public class SysIO
{
public static void main (String [] args)

{
PrintWriter out = new PrintWriter (System.out, true),

err = new PrintWriter (System.err, true);
try

{
String [] cmdArray = { "/bin/ls", "-la" };

Process dir = Runtime.getRuntime ().exec (cmdArray);
String s;
BufferedReader r =

new BufferedReader (new InputStreamReader (dir.getInputStream ()));
while ((s = r.readLine ()) != null)

out.println (s);

int ev;
if ((ev = dir.exitValue ()) != 0)

err.println ("NON-Zero exit value: " + ev);
}

catch (Exception e)
{
e.printStackTrace (System.err);
}

}
}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 12

n Serialization
“…imagine a GUI interface builder tool that
allows a programmer to build a GUI using a
point-and-click interface. Such a tool could
create a tree of AWT components within an
Applet panel, and then serialize the applet,
including all of the GUI components that it
contains. When deserialized, the applet would
have a complete GUI, despite the fact that the
applet’s class file does not contain any code
to create the GUI.”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 13

// Serialize today's date to a file
FileOutputStream f = new FileOutputStream ("tmp");
ObjectOutputStream s = new ObjectOutputStream (f);
s.writeObject ("Today");
s.writeObject (new Date());
s.flush();
s.close ();

// Deserialize a string and date from a file
FileInputStream in = new FileInputStream ("tmp");
ObjectInputStream s = new ObjectInputStream (in);
String today = (String)s.readObject ();
Date date = (Date)s.readObject ()

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 14

u save the state of an object for later restoration
F c.f. database ‘blobs’

u tedious/error-prone by hand
u key support feature for Java RMI and Java Beans
u object should implement the Serializable marker

interface

Falso exists Externalizable interface (extends
Serializable)

• if more control over processing needed

u fields marked with the ‘transient’ modifier
keyword are not serialized
F transient Date now = new Date ();

package java.io;
public interface Serializable {}

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 15

u “when an object is stored, all of the objects that
are reachable from that object are stored as well”
F references a problem

• references replaced with ID
• ID checked on write

umechanism provides for evolution
F rules

• establish compatibility between classes in system and
class in received stream

• fairly straightforward “Receiver Makes Right” system

Fmechanisms like Stream Unique Identifier
• versions of a class must declare the SUID that they are

compatible with

“serialize yourself”

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 16

uwriteObject:
F “writes the class of the object, the class signature,

and the values of all non-transient and non-static
fields.”

u for readObject:
F “The class of the object, the signature of the class,

and the values of the non-transient and non-static
fields of the class and all of its supertypes are
read”

u readObject reads against an Object
Fcreated ‘internally’ to readObject
Fso class needs to be accessible to reader

• java.io.InvalidClassException

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 17

// build a tree
ThreeNode root = new TreeNode (“Root”);
root.addLeftChild (new TreeNode (“Left Child”));
TreeNode rightChild = new TreeNode (“Right Child”);
rightChild. addLeftChild (new TreeNode (“Right Left Child”));
rightChild. addRightChild (new TreeNode (“Right Right Child”));

root.addRightChild (rightChild);

// serialize the complete tree
FileOutputStream fOut = new FileOutputStream (“SerializedTree”);
ObjectOutputStream oOut = new ObjectOutputStream (fOut);
oOut.writeObject (root);
oOut.flush ();
oOut.close ();

… (in another class, perhaps)

// deserialise the tree from the file
FileInputStream fIn = new FileInputStream (“SerializedTree”);
ObjectInputStream oIn = new ObjectInputStream (fIn);
TreeNode newRoot = (TreeNode) oIn.readObject ();

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 18

n Version 1.1 of Java introduced:
unew IOExceptions

F finer granularity of reporting
uuse of {input, Output}Stream classes deprecated

F replaced with Writers
Fmore efficient; locale-savvy

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

The Stream Zoo

Sunday, July 05, 2009 19

Character-stream class Description Byte-stream class

Reader Abstract class for character-input streams InputStream
BufferedReader Buffers input, parses lines BufferedInputStream
LineNumberReader Keeps track of line numbers LineNumberInputStream
CharArrayReader Reads from a character array ByteArrayInputStream
InputStreamReader Translates a byte stream into a character stream (none)
FileReader Translates bytes from a file into a character stream FileInputStream
FilterReader Abstract class for filtered character input FilterInputStream
PushbackReader Allows characters to be pushed back PushbackInputStream
PipedReader Reads from a PipedWriter PipedInputStream
StringReader Reads from a String StringBufferInputStream

Writer Abstract class for character-output streams OutputStream
BufferedWriter Buffers output, uses platform's line separator BufferedOutputStream
CharArrayWriter Writes to a character array ByteArrayOutputStream
FilterWriter Abstract class for filtered character output FilterOutputStream
OutputStreamWriter Translates a character stream into a byte stream (none)
FileWriter Translates a character stream into a byte file FileOutputStream
PrintWriter Prints values and objects to a Writer PrintStream
PipedWriter Writes to a PipedReader PipedOutputStream
StringWriter Writes to a String (none)

Tra
ns

en
tia

 P
ty.

 Lt
d.

Don
ati

on
Ware

