
Security

Sunday, July 05, 2009 1

“One of the most significant aspects of Java 
programming is that it creates applications that 
have extraordinary relevance to computer 
security. Few UNIX administrators would be 
prepared to allow millions of users to execute 
programs as root (the administrative 
superuser) on their system, yet this level of 
potentially total power is what every user 
cedes when they point their browser at a URL 
containing some form of Java executable.”

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 2

n Much ballyhoo
u important issue

F “Security measures are an integral part of Java’s 
design.”

uhandled at several levels
F language

• no pointers, bounded arrays, GC, etc.

F implementation
• available for ‘public’ scrutiny
• bugs & issues acknowledged quickly and responsibly

– so far!?

Fpolicy
• applet security restrictions

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 3

n Delicate issue
u “The trouble with applets is that security 

restrictions are getting tighter and tighter, while 
what you can do is becoming less and less 
significant. Every time…another hole, the noose 
tightens.”

u “…stuck in a sandbox.”
u “Java is becoming restricted to creating 

executable window dressing, not (useful) 
executable content.”

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 4

n The sandbox
uallows untrusted code to execute in a trusted 

environment
Funtrusted code is code not on the CLASSPATH

u3 aspects:
Fbytecode verifier
Fapplet class loader
FSecurityManager

valuable resources (files, etc.)

sandbox
JVM

local code
remote code

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 5

Source

Java Compiler

Intermediate
Bytecodes

Network or File

Bytecode
Interpreter

Java
Runtime

Just-In-Time
Compiler

Hardware

Bytecode
Verifier

Class
Loader

Security
Manager

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 6

n Bytecode verifier
uverification takes place before execution

Fall untrusted code is verified
• valid JVM class

– may not come from javac!
• simple analysis:

– all operations leave stack in a correct state
– registers are used correctly
– data types are not subject to illegal conversions
– all bytecodes are legal
– all class member accesses obey the access specs

F “establishes a base level of security guarantee”
• possible since Java is inherently ‘quite’ secure 

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 7

n class loader
u “…the first line of defence in the Java security 

model.”
udetermines when & how code can add classes to 

the runtime environment
Fensure that core parts are not overwritten

umay be multiple class-loaders running 
concurrently
Fensures strong separation of namespaces

• each namespace may have its own class loader

local
classes

classes
from 

trusted
machines

classes
from

a URL

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 8

n SecurityManager class
uabstract class that collects all the policy 

decisions that the run-time system must make
Faccess to filesystem, network connectivity, thread 

integrity, operating system resources, etc.
ucomplete control over a well-defined set of 

‘dangerous’ activities
udecision may depend on origin of code:

F {local, downloaded} applet
Fapplication
Fcode on CLASSPATH

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 9

umethods, etc.
FSecurityException
FcheckPackage{Access, Definition} ()
Fcheck{Read, Write} ()
Fcheck{Listen, Connect} ()
FcheckExit ()
FgetSecurityContext ()
FcheckExec ()
FcheckTopLevelWindow ()
Fetc.

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 10

// from FileoutputStream.java--actual source
public FileOutputStream (String name) throws IOException
{
SecurityManager security = System.getSecurityManager ();
if (security != null)
{
security.checkWrite (name);
}

try
{
fd = new FileDescriptor ();
open (name);
}

catch (IOException e)
{
throw new FileNotFoundException (name);
}

}

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 11

n Hostile applets still possible
u resource wastage

FCPU, memory
ugrim reaper

Fkills any other applets that may run
u forgery

Fmail, port 25; telnet, port 23
udenial of service

F tsunami

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 12

n Code signing
upremise: shouldn’t run untrusted code, so 

establish trustworthiness of code
FMicrosoft’s strategy for ActiveX

u reduced limitations on behavior
Fapplet allowed to step outside the sandbox

ubinaries digitally signed as ‘guarantee’ of quality
Fsignature irrevocable and unforgeable
Fsignatory must be trustworthy 

• may be OK within firewalls!…

valuable resources (files, etc.)

sandbox
JVM

local code

remote code
untrustedtrusted

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 13

n Digital signatures
ua sequence of bytes embedded in the code
uplaced by the originator
uunforgeable—allows users/contexts to: 

F identify object signers
Fdetect tampering
Fexamined to determine what the Java code wants 

to do so that a decision can be made about the 
resources that can be allocated to it

u recall that much corporate crime is perpetrated 
by long-time, trusted employees…
Fso do we trust ‘trust’…?

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 14

n “Security is an evolutionary process”
uprobably a few flaws in design
umay (will?) be many in implementation

FSun professes “zero tolerance for security bugs”
u relies on trust

Fsensationalist media could destroy that trust
u “A surprisingly large portion of the entire 

infrastructure must be trustworthy, including 
pieces you might not have realized were critical.”

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 15

n Security features still evolving
ubecoming lots more sophisticated

F1.0: simple sandbox model
• namespaces via class loaders/code verification

F1.1: code signing and digital signatures
• verify origin and establish trust

F1.2: policy-driven security
• access control lists & definable policies

– load-time mechanisms
• no built-in ideas of trust
• for all Java code

– applets, servlets, apps
– etc.

valuable resources (files, etc.)

sandbox
JVM

local or remote code
(signed or not)

security policy

class loaders

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware



Security

Sunday, July 05, 2009 16

n Policies
uspecified at runtime

upolicy files

upolicytool
F for editing policies

// this file: .my.default.policy
// if the code is signed by "Duke", grant it read/write access to all
// files in /tmp:
grant signedBy "Duke" 

{
permission java.io.FilePermission "/tmp/*", "read,write";
}; 

// Grant everyone the standard permissions:
grant

{
permission java.util.PropertyPermission "java.vendor";
};

> java -Djava.security.policy=file://.my.default.policy MyJavaApp hello world

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware

file://.my.default.policy


Security

Sunday, July 05, 2009 17

n Privileged blocks
u “enabling a piece of trusted code to temporarily 

enable access to more resources than are 
available directly to the code that called it”
Fe.g. access to installed fonts: normal code must 

become (controllably) privileged while obtaining 
the current platform’s installed fonts 

void doSomethingPrivileged (final String param)
{
Object result = AccessController.doPrivileged

(
new PrivilegedAction ( )  // an interface 

{
public Object run ( )

{
// privileged code goes here, for example:
return doWhatever (param);
}

}
);

}

Tra
ns

en
tia

 P
ty.

 Lt
d. 

Don
ati

on
Ware


